
1568965407 1

Abstract—This paper proposes a novel architecture for

meeting Quality of Service (QoS) requirements of real-time
traffic across consumer broadband links. In our approach the
responsibility of QoS signalling is moved away from the
application to the network. Network servers automatically
identify traffic that might benefit from QoS and then tr igger
the provisioning of QoS by signalling network elements such as
access routers. This approach removes the need for the
application to signal to the network its explicit QoS
requirements, making applications easier to develop and more
por table. I t also enables QoS provision for legacy applications
for which there is limited opportunity to include explicit end-
host signalling protocols. The paper develops the architecture
required to realize the approach and discusses the under lying
techniques.

Index Terms—Communication Systems, Intelligent
Networks, Traffic control (communication), Pattern
Classification

I. INTRODUCTION

Quality of service (QoS) provisioning across the Internet has
been a challenging area of research for over a decade. It has
resulted in a number of standards and approaches, such as
Integrated Services (IntServ) [1], the Resource Reservation
Protocol (RSVP) [2] and Differentiated Services (DiffServ)
[3]. Yet in terms of the number of networks and applications
that use these technologies, success has been modest at best.
Most networks and applications continue to exclusively use
‘best effort services’ . Usually they do not expect, and they
are not given, explicit QoS guarantees.

One of the reasons for the poor uptake of these QoS
approaches is the requirement for applications to signal
explicit quality of service requirements to the underlying
network. This is a somewhat onerous obligation to place on
applications and their developers. It presupposes that the
developers are aware of the issue, understand the
technologies for providing QoS and have explicit network
requirements for their application. None of these
requirements are necessarily true.

Software developers often do not have a good

Manuscript received May 30, 2005. This work was carried out within

the Centre for Advanced Internet Architectures at Swinburne University of
Technology.

All the authors are researchers within the Centre for Advanced Internet
Architectures. L. Stewart can be contacted on lastewart@swin.edu.au. G.
Armitage can be contacted on garmitage@swin.edu.au. P. Branch can be
contacted on pbranch@swin.edu.au and S. Zander can be contacted on
szander@swin.edu.au.

understanding of network traffic engineering. Expecting
them to understand the subtleties of different QoS classes is
unreasonable. Often, where there is an understanding of the
issues, their expectations of the network are quite vague.

While some applications (such as Voice over IP) with a
long history of development, might have well-understood
and explicit QoS requirements, most emerging applications,
such as multi-player games, do not. QoS requirements for
emerging applications are often quite difficult to state
explicitly. Applications where quick responses are essential
(such as in First Person Shooter games) may simply require
that all information is propagated as quickly as possible.
Other applications may require that some information needs
to be distributed rapidly, while other information can be
distributed much more slowly. Specifying such vague
requirements in explicit terms suitable for implementation as
(for example) RSVP protocol exchanges is likely to be
challenging for most developers.

Then there is the issue that most network operators do not
currently support mechanisms that allow the dynamic
provisioning of QoS for certain applications. The main
reason is that applications do not support QoS signalling.
Although basic mechanisms for traffic differentiation exist in
many current routers, any solutions based on complicated
signalling protocols are far more complex to manage than
best effort networks. Therefore even where the QoS
requirements of an application are well understood,
developers will not implement QoS support as long the
underlying networks do not support it and there is no simple
and standardized interface/protocol. Restricting an
application to run exclusively in an IntServ or DiffServ
environment will drastically reduce the number of potential
users of an application. The alternative of implementing all
the protocols that might be used in networks requires a large
investment in software development, as well as a profound
understanding of networks, QoS protocols and architectures.

Consequently, if QoS is to be made available to new
applications we must find alternatives to explicit QoS
signalling from the application to the network. Furthermore,
QoS should also be made available to existing applications
without the need to change their implementation.

In this paper we propose a novel architecture for moving
QoS signalling from the application to the network. We
propose placing intelligence within the network to identify
traffic flows that might benefit from QoS. We identify the
major functions needed in such an approach and suggest
what we believe are appropriate groupings of functions.

An Architecture for Automated Network
Control of QoS over Consumer Broadband

Links

Lawrence Stewart, Grenville Armitage, Philip Branch, Sebastian Zander

1568965407 2

The rest of the paper is structured as follows. Section II
discusses related work. In particular we describe some
techniques and products that have been developed recently
which might form the building blocks for an integrated
architecture. Section III outlines our proposed architecture:
the Traffic Classification and Prioritisation System
(TCAPS). Section III.C describes the functional groupings
that we believe are most appropriate. Section V describes
our prototype design, including a detailed description of all
components of the architecture. Section VI concludes with a
discussion of research issues that need resolution before the
TCAPS architecture can be fully realized.

II. RELATED WORK

A. QoS Provisioning for Internet based Applications

The approach of moving QoS signalling from the
application to the network layer has attracted some attention
recently. There is an understanding that tying an application
to a particular standard for QoS provision will drastically
restrict its deployment options and so alternatives must be
found.

The most common approach is to write the application
assuming a ‘best effort’ service and then leave it to the user
to ensure that the network capacity is sufficiently over
provisioned such that QoS mechanisms are not required.
This approach, although simple, is fraught with risk,
particularly on consumer broadband links. Within the
consumer broadband network, the Customer Premises
Equipment (CPE) is the key congestion point in the
upstream link, where bandwidth is at a premium and where
QoS provisioning is likely to have the most beneficial
impact. Consequently, alternatives to over provisioning in
the ‘ last mile’ of the network need to be considered.
However, before we can do that, we need to review briefly
the QoS standards that can be used in dealing with this
problem.

B. Internet QoS Standards

The Integrated Services (IntServ) and Resource
ReSerVation Protocol (RSVP) were first defined by the
IETF in 1994 with revisions to RSVP in 1997 to attempt to
solve the problem of dynamic QoS provision for real-
time/interactive traffic traversing the Internet. The
IntServ/RSVP model uses signalling protocol messages
along the network path between sender and receiver, with
each node along the path storing QoS state information for
each flow that has requested resources.

The difficulty that has limited the deployment of IntServ
is that it requires the explicit implementation of RSVP in all
network nodes and possibly in the protocol stack of each end
host (although the use of RSVP proxies can alleviate the
latter constraint). Furthermore, each RSVP enabled network
node must keep some state for each reservation request. This
makes the approach unscaleable for large networks with
many users.

To overcome the scalability problem Differentiated
Services (DiffServ) was defined in 1998 by the IETF.
DiffServ enables bits that correspond to an aggregate QoS
traffic class to be set in the IP header’s Diffserv Code Point

(DSCP) field. The DSCP is then inspected by DiffServ
enabled routers along the path, which provide the QoS
specified for that particular QoS traffic class.

A key problem with this approach is that every router
along the network path needs to be DiffServ enabled and
have the same understanding of which DSCPs correspond to
which QoS traffic class to ensure proper QoS is given to the
correct packet flows. Another problem is that a party trusted
by the network - which is frequently not the application itself
- must do the setting of the DSCP. An edge router must
perform detailed packet inspection and then set the
appropriate DSCP bits based on the network’s QoS policy at
the time. Diffserv is limited to single administrative domains
unless agreement can be reached on DSCP interpretation,
and the management of edge router classification rules
becomes a problem in the absence of an actual signalling
protocol.

The MultiProtocol Label Switching (MPLS) Architecture
[4] was defined by the IETF in 2001 to simplify the way
routers make packet forwarding decisions. Instead of each
router along the network path examining the IP packet
header and making a forwarding decision based on this
information, MPLS only requires the packet header to be
analysed once. MPLS then adds a label (a short, fixed length
value) to the packet, both of which are transmitted to the
next hop, where the label is matched in a lookup table, a new
label is added and the packet is sent to the next hop. The
label is used as the basis for all forwarding decisions, and
allows devices that are not capable of doing IP header
inspection or not capable of doing it quickly enough to
perform routing functionality. One of the benefits of MPLS
is that a packet’s class of service can be partially or
completely inferred from the label, which allows for
simplified QoS classification and management [5].

Nevertheless, MPLS still suffers from the same problems
as DiffServ, in that every node along the network path has to
support MPLS in order to provide QoS based on MPLS
labels, and each MPLS enabled device needs to know what
MPLS labels map to a particular class of service in order to
provide consistent QoS. An administrator also needs to
define the initial classification criteria/policies to determine
which types of flows should be assigned a particular MPLS
label based on their traditional IP header inspection.

An approach that avoids the application making explicit
assumptions about the underlying QoS mechanism is
needed.

C. QoS Enabled Products

Products have recently become available with
functionality that can be used to provide some degree of
QoS guarantee. Ubicom Inc.’s “StreamEngine” [6]
technology, and D-Link with their “GameFuel” products [7]
built upon “StreamEngine” , provide routers intended for
multiplayer games but which are also capable of providing
benefits to other real-time/interactive traffic applications.

However, a limitation of StreamEngine is that it relies
solely on local packet inspection to classify traffic into QoS
classes. Packet inspection involves examining multiple fields
in the packet (usually the IP header, often the transport
header and optionally the application-specific transport

1568965407 3

payload) and inferring what type of traffic is being examined
based on information such as “well-known” TCP/UDP port
numbers, known IP addresses and data contents. There are a
number of weaknesses with this technique.

The first is that it relies on being able to inspect the inner
packet contents for meaningful information. Unfortunately
this is not always possible (for example, if the IP flow is
encrypted).

The second problem is that well-known port numbers are
not a reliable method of classifying traffic. This technique
assumes that a particular port number is always used by a
particular application and any flows to/from the particular
port involve the particular application. This assumption is
often untrue. (For example, the online game Quake 3 often
uses UDP port 27960, but there’s nothing preventing other
applications also generating traffic that uses UDP port
27960.)

The third difficulty is that application layer protocols can
be very complex, their specifications are not always public
and they regularly change. The effort required in
implementing accurate classifiers and keeping them up to
date is very high. Furthermore, this approach is restricted by
the often very limited performance of such devices in terms
of processing speed and memory.

Finally, implementations using this technique require
frequent external updates to maintain the rule list, which
maps packet characteristics to traffic types.

Some networking equipment manufacturers such as Cisco
Systems Inc. have integrated “automated” QoS features [8],
[9] into their high-end switches and routers. These features
allow users to prepare one set of QoS “rules” on one device
that will then distribute the same rule set to all devices on
the network that are of the same type and from the same
manufacturer. The system still requires user intervention to
define and update the QoS policies and rules manually.

Allot Communications Ltd. has a family of products
called NetEnforcer [10] on the market for IP carriers and
service providers, which aim to provide simplified
management of bandwidth control and service level
management. The same problems inherent in the networking
equipment “automated QoS” solution discussed above apply
to the NetEnforcer product range. Applications requiring
prioritisation on a link managed by NetEnforcer need to be
provisioned manually before they are able to receive the
QoS they require.

Although this work is useful and provides the necessary
building blocks for providing QoS, by itself it lacks
flexibility. In particular the traffic classifier needs regular
updates in each CPE. An architecture in which the
classification can be independent of individual CPEs is
likely to be more effective.

III. THE TCAPS ARCHITECTURE

A. Motivation for TCAPS Architecture

From the previous discussion there are a number of points
that have led us to develop a network-centric rather than
application-centric QoS management architecture.

The first is that application developers are unlikely to
include the code for explicit signalling of QoS within their

application. It restricts the potential networks the application
is able to run on, requires more knowledge of network
protocols than the developer is likely to possess and
increases the software development effort considerably.

The second factor that has led us to a network-centric
architecture is that there are already a significant number of
applications deployed within the network that assume a ‘best
effort’ service, but could benefit from QoS provisioning. For
Internet QoS to become a reality, it needs to be implemented
outside the application.

In attempting to decide what capabilities the architecture
should provide, we have noted that Internet links tend to be
massively over provisioned within the core of the network,
meaning there is minimal queuing delay and jitter introduced
in the network core. The majority of network queuing delay
and jitter comes from the upstream CPE/ISP link.
Consequently, providing QoS across this link is the goal of
our proposed architecture. Our architecture does not change
IP packet fields and does not require every device in the
end-to-end path between the source and destination CPE to
inspect the packets in order for QoS to be provided. Our
architecture includes the automatic classification of real-
time/interactive flows and enables appropriate signalling to
the required devices to instantiate appropriate QoS for these
flows.

Our architecture is a superset of a number of recent
approaches to providing QoS. Some existing products - for
example, Ubicom’s StreamEngine technology - could
become an integral part of our CPE design. More
importantly, our architecture will enable the central control
and dynamic update of customized QoS rules for every
participating CPE. The architecture we propose will still be
effective regardless of whether or not real-time/interactive
traffic is encrypted or running on non standard port numbers.

The architecture defines a mechanism for the automatic
creation and distribution of customised rules to each CPE
based on the traffic flowing to and from that CPE. No user
intervention is required to define which flows contain real-
time/interactive traffic, or to create, update or remove the
rules that control QoS being given to these flows. (There is
also potential for our system to distribute DSCP
classification rules to edge routers on the ISP-side of a
customer link, to further mark packets heading into the ISP’s
network.)

The next section describes the capabilities needed to
provide the above services.

B. TCAPS Functionality

The emphasis of the TCAPS architecture is in providing
QoS controls across the ‘ last mile’ between the ISP and the
customer’s CPE. The TCAPS architecture comprises a
centralised traffic classifier, a signalling protocol, a CPE
based QoS subsystem (QoS SS) and a QoS subsystem
interface.

The purpose of the traffic classifier is to identify traffic
based on some characteristics. The classifier will run at a
privileged point in the ISPs network, examining all packets
going to and coming from each piece of CPE. Using some
method of classification, traffic flows will be classified into
two groups: real-time/interactive and everything else. Flows

1568965407 4

identified as real-time/interactive will be given priority over
all other traffic travelling via the customer/ISP link. The
minimum number of priority levels required within the
system is therefore two: no priority and priority.

The QoS SS forms the basis of the traffic prioritization
part of the system. The prioritisation part of the system runs
at the CPE end of the link to prioritise upstream traffic. The
prioritisation part of the system can also optionally run at the
ISP end of the link to prioritise downstream traffic.
However, this is generally not as much of an issue given the
common asymmetry between upstream and downstream
traffic speeds in most access networks.

The signalling protocol will be used to inform the CPE
equipment (and optionally the ISP’s equipment) of what
traffic flows on the link are to be prioritized.

The QoS subsystem interface needs to be resident in the
CPE (and optionally the ISP’s equipment) to receive and
implement the signalling information.

In Figure 1 we show the major flows of information
necessary to implement the architecture. A traffic classifier
monitors traffic to/from the CPE and identifies flows that
should receive a higher priority. This information is used to
generate commands to signal the CPE equipment to give
those flows a higher priority. The commands are transmitted
using a (new) QoS signalling protocol to the CPE. The
commands are interpreted by the CPE QoS subsystem
interface and given to the QoS SS, which then uses priority
queuing or scheduling to give priority to the identified flows.

CPE

Customer
Premises

ISP
Premises

Internet

 Classifier

QoS
Subsystem

QoS Protocol

QoS SS
Interface

Figure 1: TCAPS Architecture – Major Information
Flows

The system will function in parallel with legacy CPE to
form a heterogenous network of partially TCAPS aware
devices. Devices that do not communicate using the TCAPS
signalling protocol will be ignored by the traffic classifier,
and will function as usual. This allows the possibility to roll
out value added services incrementally without the
requirement that all customers must upgrade to TCAPS
enabled equipment.

Whilst providing prioritisation to real-time/interactive
traffic is the current focus of this architecture, this is not the
only QoS mechanism that can be used. The available QoS
mechanisms are highly dependent on the implementation of
the QoS SS. For example, if the QoS SS is capable of
providing more than two priority levels, it is possible to
establish classes of priority traffic. This can be used to
express relationships like: VoIP is more important than
multiplayer gaming is more important than all other traffic.
Most QoS SSs also allow explicit bandwidth management,
which can be used to set more traditional QoS resource
guarantee conditions e.g. VoIP requires 64kbps of the total

bandwidth permanently.
To allow additional features like these to be used

advantageously within the system, the CPE will be able to
communicate its capabilities to the traffic classifier. The
traffic classifier will then be able to utilise this information
to tailor rules to take advantage of some or all of the CPEs
capabilities.

C. TCAPS Functional Groupings

The allocation of different functions into functional
groupings will obviously depend on the size of the network.
In this section we suggest a simple grouping of functions
suitable for a small ISP.

Our proposed functional grouping is shown in Figure 2. In
our model we group the packet classifier into a single device
- the TCAPS server. The TCAPS server receives a copy of
all traffic to/from each customer that makes use of TCAPS
through the use of port mirroring on a switch. In case the
switch does not support port mirroring, other technology
such as electrical or optical taps could be used to access the
traffic. Larger ISPs might have multiple servers, each
managing a subset of the ISP’s TCAPS enabled customer
base.

The TCAPS server first classifies the packets to identify
whether or not the flow they belong to should be prioritized.
Then the TCAPS server initiates a protocol exchange with
the client’s CPE to prioritise that flow. The CPE must be
able to interpret the QoS signalling protocol commands from
the TCAPS server. The CPE then uses priority queuing or
scheduling to give a higher priority to that flow than to other
flows. Regardless of how the process occurs, the application
whose flows are being prioritised need not know about it.
The application can be developed without any knowledge or
requirements for QoS.

ISP
Router

Sw itch

CPE

TCAPS
 Server

 Workstati on

Customer
Premises

ISP

 Premises

Internet

Figure 2: TCAPS Architecture – Functional Groupings

IV. PROTOTYPE DESIGN

A. Overview

In our prototype implementation of this architecture we
plan to use FreeBSD [11] systems for the CPE and the
TCAPS server. Ultimately we intend implementing the
system on a commercially available CPE device, but at this
experimental stage the flexibility of an easily programmed
system is necessary.

CPE traffic is identified by the source/destination IP of
upstream/downstream traffic respectively. An issue with this
is that ISPs tend to manage IP address assignment via
DHCP. It is therefore important to maintain a consistent
mapping of IP address to individual CPE if accurate server

1568965407 5

to CPE signalling is to be possible. We propose that TCAPS
CPE embed their MAC address in all signalling
communications to the server and the server embeds the
destination CPE’s MAC address in all signalling
communications to CPE.

For CPE to server communications, the embedded MAC
address and the source IP of the signalling communication
can be used to build a table mapping CPE IP address to CPE
MAC address. If a signalling communication is received
with a known MAC address but differing source IP address,
a change of IP can be inferred and the server can update its
state accordingly.

For server to CPE communications, if the embedded
MAC does not match the CPE’s MAC, the CPE can assume
to have received the communication in error and ignore it.

In the event of an IP address change, there will be a
window of time where the CPE is not able to receive
signalling communications from the server because of the
server’s now inconsistent CPE IP to MAC address mapping.
This length of time will be tuneable by making use of a
polling signalling communication that occurs periodically
from the CPE to the server. The length of time between
polling communications will determine the maximum
amount of time a server is out of contact with a particular
CPE.

The TCAPS server can also record the state of the CPEs,
enabling downloads of priority rule information following
CPE or ISP outages. Our prototype will support requests for
state information from the CPE and initiation of transfer of
state information from the TCAPS server to the CPE.

We now describe each subsystem in more detail.

B. Broadband Access CPE

The broadband access CPE is located at the customer’s
end of the CPE/ISP link. This device provides the hardware
and software platform for the QoS subsystem (QoS SS),
TCAPS client interface and signalling protocol. Figure 3
shows a block diagram of the CPE.

������

���	�
�

�
�����������������

������

��	���
����
������
��
�������������

�����������
�����

�
�����������
��

����
����� ��

 ���
����
����

�������

����
���

!�����

"���
����
�����

�
��
�������������

����
������

������

���	�
��#����

Figure 3: CPE block diagram

The CPE requires two network interfaces: one connected
to the Customer Premises (CP) network, and the other
connected to the broadband access network. In a standard
broadband access CPE, traffic flowing from the CP network
to the broadband access and ISP network would normally be
queued at the CPE in a first in first out (FIFO) manner for
transit onto the upstream link. This queuing arises from the
fact that the CP network tends to operate at speeds above
10Mbps, whereas typical broadband access uplink speeds
are limited to sub 1Mbps, with 128kbps and 256kbps being

common among current broadband Internet access plans.
Queuing at the CPE for the downstream link is unusual, as
the CP network’s operating speed is usually much higher
than the broadband access downstream speed.

The TCAPS broadband access CPE uses priority queuing
within the CPE device to ensure that higher priority
realtime/interactive traffic is sent on the upstream link before
other traffic, even if the other traffic arrived before the high
priority traffic.

C. QoS Subsystem

The QoS SS is responsible for simple packet filtering
based on IP header and transport header information and
providing the priority queuing framework. Figure 4 presents
a block diagram of the TCAPS QoS SS.

Figure 4: Simplified QoS SS block diagram

The QoS SS block diagram in Figure 4 resembles a
standard packet filtering subsystem, with the addition of the
queuing system and client interface blocks. A packet
filtering subsystem is typically placed in the path of packet
flow to restrict or modify the flow of packets between source
and destination. In Figure 4, packets flowing through the
QoS SS enter via network interface 1 and leave via network
interface 2, after having traversed the packet filtering and
queuing subsystem.

The QoS subsystem is comprised of a standard packet
filter as described above, with the addition of a QoS module
that is capable of providing priority queuing. The TCAPS
client interface interacts with the QoS SS rule parser, rather
than using human intervention to manage rules. This allows
remote management of a TCAPS CPE’s QoS SS by a
controlling TCAPS server via the TCAPS signalling
protocol and client interface.

D. TCAPS Server

The TCAPS server operates at a point in the ISP’s
network that is capable of inspecting all traffic going to and
coming from each piece of CPE. The TCAPS server
provides the hardware and software platform for the traffic
classifier and signalling protocol TCAPS system blocks.
Figure 5 shows a block diagram of the TCAPS server.

Figure 5: TCAPS server block diagram

1568965407 6

The TCAPS server uses two separate network interfaces:
one to communicate with and one to receive a copy of all
traffic from CPEs. It could be argued that both requirements
could be fulfilled with the use of a single network interface.
However, depending on how the TCAPS server taps into the
network it is impossible to use this network interface for the
QoS signalling. Furthermore the use of two interfaces
decreases the possibility of CPE traffic interfering with the
TCAPS server traffic (which includes the signalling between
the server and the CPE devices).

The TCAPS server acts as the central management point
for TCAPS related behaviour. The server is responsible for
running the TCAPS system components that classify the
traffic of TCAPS enabled CPE and manage these CPE via
use of the TCAPS signalling protocol.

The traffic classifier system component receives traffic
from CPE via a network tap from the first of the TCAPS
server’s two network interfaces. Its role is to classify the
traffic of CPE controlled by the server. The traffic classifier
also communicates with the CPE for general TCAPS
administrative issues or priority rule management, by use of
the TCAPS signalling protocol. All network
communications are sent via the second of the TCAPS
server’s two network interfaces.

V. CONCLUSION

The TCAPS framework is a feasible approach to
providing QoS to certain kinds of applications. It is flexible,
it removes the need for individual CPE to be regularly
updated with new classifier information and it removes the
computation burden from the CPE. It enables CPE that are
not TCAPS capable to coexist with CPEs that are, and
allows the possibility of enabling QoS across the whole
network. Nevertheless, there are a number of research issues
that need investigation to realize the full potential of this
approach.

Packet inspection is a slow and cumbersome way to
identify high priority flows. It is also not necessarily a
reliable one. We are experimenting with different
approaches based on machine learning (see [12] and [13]).
By learning the traffic patterns of certain kinds of traffic, the
classifier will be able to make decisions about multiple flows
much more quickly with much less information and
processing. Previous work [14], [15], [16] and [17] has
been done to build synthetic traffic models for real-
time/interactive traffic which could be used effectively in
this approach.
Although using a FreeBSD system as a CPE allows great
flexibility in experimenting with different techniques, we
hope that this architecture will be widely adopted.
Consequently, we will investigate the use of this architecture
with commercial CPE devices that support priority queuing.

Another important issue is to characterise this work for
current network access technologies and extend it to those
that are emerging. How effective is the approach when
applied to production ADSL or cable modem based
networks? What of emerging wireless network technologies
such as IEEE 802.16?

Security is another issue that needs addressing within this

architecture. Any external management of customer’s
networking equipment needs strong authentication.

Our proposed approach to providing QoS has many
advantages over other attempts. The main advantage is that
it removes the need for the application developer to
implement any QoS functionality, and therefore also works
with all existing applications. An architecture that
implements this approach to provision of QoS may finally
see the widespread deployment of Internet QoS.

REFERENCES

[1] R. Braden, D. Clark, S. Shenker, “ Integrated Services in the Internet
Architecture: an Overview” , IETF RFC 1633, June 1994.

[2] R. Braden, L. Zhang, S. Berson, S. Herzog, S. Jamin, “Resource
ReSerVation Protocol (RSVP) -- Version 1 Functional Specification” ,
IETF RFC 2205, September 1997.

[3] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss, “An
Architecture for differentiated services” , IETF RFC 2475, December
1998.

[4] E. Rosen, A. Viswanathan, R. Callon, “Multiprotocol Label
Switching Architecture” , IETF RFC 3031, January 2001.

[5] G.J. Armitage, "MPLS - The Magic Behind the Myths", IEEE
Communications, vol. 38, no. 1, January 2000

[6] Ubicom Inc., “Solving Performance Problems with Interactive
Applications in a Broadband Environment using StreamEngine™
Technology” , October 2004, http://ubicom.com/pdfs/StreamEngine-
WP-20041031.pdf (as at 30/05/2005)

[7] “D-Link 108G Gaming Router” ,
http://games.dlink.com/products/?pid=370 (as at 30/04/2005)

[8] “CiscoWorks QoS Policy Manager 3.2” ,
http://www.cisco.com/en/US/products/sw/cscowork/ps2064/products
_data_sheet09186a0080091bcf.html (as at 30/05/2005)

[9] “AutoQoS for Voice Over IP (VoIP)” ,
http://www.cisco.com/en/US/tech/tk543/tk759/technologies_white_p
aper09186a00801348bc.shtml (as at 30/05/2005)

[10] “Bandwidth control, service level management” ,
http://www.allot.com/pages/solutions_content.asp?intGlobalId=26 (as
at 30/05/2005)

[11] “The FreeBSD Project” , http://www.freebsd.org/ (as at 30/05/2005)
[12] T. Mitchell, “Machine Learning” , McGraw-Hill Education (ISE

Editions), December 1997.
[13] S. Zander, T. Nguyen, G. Armitage, “Self-learning IP Traffic

Classification based on Statistical Flow Characteristics” , Passive &
Active Measurement Workshop (PAM) 2005, Boston, USA,
March/April 2005

[14] T. Lang, G. Armitage, P. Branch, H-Y. Choo, "A Synthetic Traffic
Model for Half Life", Australian Telecommunications Networks &
Applications Conference 2003, (ATNAC 2003), Melbourne,
Australia, December 2003,
http://caia.swin.edu.au/pubs/ATNAC03/lang-armitage-branch-choo-
ATNAC2003.pdf (as at 30/05/2005)

[15] S.Zander, G.Armitage, "A Traffic Model for the XBOX Game Halo
2," (accepted for publication) 15th ACM International Workshop on
Network and Operating System Support for Digital Audio and Video
(NOSSDAV 2005), Washington (USA), June 2005.

[16] T.Lang, P.Branch, G.Armitage. "A Synthetic Traffic Model for
Quake 3," ACM SIGCHI ACE2004 conference, Singapore, June
2004

[17] T.Lang, G.Armitage. "A Ns2 model for the Xbox System Link game
"HALO"," Australian Telecommunications Networks & Applications
Conference 2003 (ATNAC 2003), Melbourne, Australia, December
2003, http://caia.swin.edu.au/pubs/ATNAC03/lang-armitage-
ATNAC2003.pdf (as at 30/05/2005)

