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Abstract—This paper proposes a novel architecture for  

meeting Quality of Service (QoS) requirements of real-time 
traffic across consumer broadband links. In our  approach the 
responsibility of QoS signalling is moved away from the 
application to the network. Network servers automatically 
identify traffic that might benefit from QoS and then tr igger  
the provisioning of QoS by signalling network elements such as 
access routers. This approach removes the need for  the 
application to signal to the network its explicit QoS 
requirements, making applications easier  to develop and more 
por table. I t also enables QoS provision for  legacy applications 
for  which there is limited opportunity to include explicit end-
host signalling protocols. The paper develops the architecture 
required to realize the approach and discusses the under lying 
techniques. 
 
Index Terms—Communication Systems, Intelligent 
Networks, Traffic control (communication), Pattern 
Classification 

I. INTRODUCTION 

Quality of service (QoS) provisioning across the Internet has 
been a challenging area of research for over a decade. It has 
resulted in a number of standards and approaches, such as 
Integrated Services (IntServ) [1], the Resource Reservation 
Protocol (RSVP) [2] and Differentiated Services (DiffServ) 
[3]. Yet in terms of the number of networks and applications 
that use these technologies, success has been modest at best. 
Most networks and applications continue to exclusively use 
‘best effort services’ . Usually they do not expect, and they 
are not given, explicit QoS guarantees. 

One of the reasons for the poor uptake of these QoS 
approaches is the requirement for applications to signal 
explicit quality of service requirements to the underlying 
network. This is a somewhat onerous obligation to place on 
applications and their developers. It presupposes that the 
developers are aware of the issue, understand the 
technologies for providing QoS and have explicit network 
requirements for their application. None of these 
requirements are necessarily true. 

Software developers often do not have a good 

 
Manuscript received May 30, 2005. This work was carried out within 

the Centre for Advanced Internet Architectures at Swinburne University of 
Technology. 

All the authors are researchers within the Centre for Advanced Internet 
Architectures. L. Stewart can be contacted on lastewart@swin.edu.au. G. 
Armitage can be contacted on garmitage@swin.edu.au. P. Branch can be 
contacted on pbranch@swin.edu.au and S. Zander can be contacted on 
szander@swin.edu.au.  

understanding of network traffic engineering. Expecting 
them to understand the subtleties of different QoS classes is 
unreasonable. Often, where there is an understanding of the 
issues, their expectations of the network are quite vague.  

While some applications (such as Voice over IP) with a 
long history of development, might have well-understood 
and explicit QoS requirements, most emerging applications, 
such as multi-player games, do not. QoS requirements for 
emerging applications are often quite difficult to state 
explicitly. Applications where quick responses are essential 
(such as in First Person Shooter games) may simply require 
that all information is propagated as quickly as possible. 
Other applications may require that some information needs 
to be distributed rapidly, while other information can be 
distributed much more slowly. Specifying such vague 
requirements in explicit terms suitable for implementation as 
(for example) RSVP protocol exchanges is likely to be 
challenging for most developers.  

Then there is the issue that most network operators do not 
currently support mechanisms that allow the dynamic 
provisioning of QoS for certain applications. The main 
reason is that applications do not support QoS signalling. 
Although basic mechanisms for traffic differentiation exist in 
many current routers, any solutions based on complicated 
signalling protocols are far more complex to manage than 
best effort networks. Therefore even where the QoS 
requirements of an application are well understood, 
developers will not implement QoS support as long the 
underlying networks do not support it and there is no simple 
and standardized interface/protocol. Restricting an 
application to run exclusively in an IntServ or DiffServ 
environment will drastically reduce the number of potential 
users of an application. The alternative of implementing all 
the protocols that might be used in networks requires a large 
investment in software development, as well as a profound 
understanding of networks, QoS protocols and architectures.  

Consequently, if QoS is to be made available to new 
applications we must find alternatives to explicit QoS 
signalling from the application to the network. Furthermore, 
QoS should also be made available to existing applications 
without the need to change their implementation. 

In this paper we propose a novel architecture for moving 
QoS signalling from the application to the network. We 
propose placing intelligence within the network to identify 
traffic flows that might benefit from QoS. We identify the 
major functions needed in such an approach and suggest 
what we believe are appropriate groupings of functions.  
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The rest of the paper is structured as follows. Section II 
discusses related work. In particular we describe some 
techniques and products that have been developed recently 
which might form the building blocks for an integrated 
architecture. Section III outlines our proposed architecture: 
the Traffic Classification and Prioritisation System 
(TCAPS). Section III.C describes the functional groupings 
that we believe are most appropriate. Section V describes 
our prototype design, including a detailed description of all 
components of the architecture. Section VI concludes with a 
discussion of research issues that need resolution before the 
TCAPS architecture can be fully realized. 

II. RELATED WORK 

A.  QoS Provisioning for Internet based Applications 

The approach of moving QoS signalling from the 
application to the network layer has attracted some attention 
recently. There is an understanding that tying an application 
to a particular standard for QoS provision will drastically 
restrict its deployment options and so alternatives must be 
found.  

The most common approach is to write the application 
assuming a ‘best effort’  service and then leave it to the user 
to ensure that the network capacity is sufficiently over 
provisioned such that QoS mechanisms are not required. 
This approach, although simple, is fraught with risk, 
particularly on consumer broadband links. Within the 
consumer broadband network, the Customer Premises 
Equipment (CPE) is the key congestion point in the 
upstream link, where bandwidth is at a premium and where 
QoS provisioning is likely to have the most beneficial 
impact. Consequently, alternatives to over provisioning in 
the ‘ last mile’  of the network need to be considered. 
However, before we can do that, we need to review briefly 
the QoS standards that can be used in dealing with this 
problem. 

B. Internet QoS Standards 

The Integrated Services (IntServ) and Resource 
ReSerVation Protocol (RSVP) were first defined by the 
IETF in 1994 with revisions to RSVP in 1997 to attempt to 
solve the problem of dynamic QoS provision for real-
time/interactive traffic traversing the Internet. The 
IntServ/RSVP model uses signalling protocol messages 
along the network path between sender and receiver, with 
each node along the path storing QoS state information for 
each flow that has requested resources. 

The difficulty that has limited the deployment of IntServ 
is that it requires the explicit implementation of RSVP in all 
network nodes and possibly in the protocol stack of each end 
host (although the use of RSVP proxies can alleviate the 
latter constraint). Furthermore, each RSVP enabled network 
node must keep some state for each reservation request. This 
makes the approach unscaleable for large networks with 
many users. 

To overcome the scalability problem Differentiated 
Services (DiffServ) was defined in 1998 by the IETF. 
DiffServ enables bits that correspond to an aggregate QoS 
traffic class to be set in the IP header’s Diffserv Code Point 

(DSCP) field. The DSCP is then inspected by DiffServ 
enabled routers along the path, which provide the QoS 
specified for that particular QoS traffic class. 

A key problem with this approach is that every router 
along the network path needs to be DiffServ enabled and 
have the same understanding of which DSCPs correspond to 
which QoS traffic class to ensure proper QoS is given to the 
correct packet flows. Another problem is that a party trusted 
by the network - which is frequently not the application itself 
- must do the setting of the DSCP. An edge router must 
perform detailed packet inspection and then set the 
appropriate DSCP bits based on the network’s QoS policy at 
the time. Diffserv is limited to single administrative domains 
unless agreement can be reached on DSCP interpretation, 
and the management of edge router classification rules 
becomes a problem in the absence of an actual signalling 
protocol. 

The MultiProtocol Label Switching (MPLS) Architecture 
[4] was defined by the IETF in 2001 to simplify the way 
routers make packet forwarding decisions. Instead of each 
router along the network path examining the IP packet 
header and making a forwarding decision based on this 
information, MPLS only requires the packet header to be 
analysed once. MPLS then adds a label (a short, fixed length 
value) to the packet, both of which are transmitted to the 
next hop, where the label is matched in a lookup table, a new 
label is added and the packet is sent to the next hop. The 
label is used as the basis for all forwarding decisions, and 
allows devices that are not capable of doing IP header 
inspection or not capable of doing it quickly enough to 
perform routing functionality. One of the benefits of MPLS 
is that a packet’s class of service can be partially or 
completely inferred from the label, which allows for 
simplified QoS classification and management [5]. 

Nevertheless, MPLS still suffers from the same problems 
as DiffServ, in that every node along the network path has to 
support MPLS in order to provide QoS based on MPLS 
labels, and each MPLS enabled device needs to know what 
MPLS labels map to a particular class of service in order to 
provide consistent QoS. An administrator also needs to 
define the initial classification criteria/policies to determine 
which types of flows should be assigned a particular MPLS 
label based on their traditional IP header inspection. 

An approach that avoids the application making explicit 
assumptions about the underlying QoS mechanism is 
needed. 

C. QoS Enabled Products 

Products have recently become available with 
functionality that can be used to provide some degree of 
QoS guarantee. Ubicom Inc.’s “StreamEngine”  [6] 
technology, and D-Link with their “GameFuel”  products [7] 
built upon “StreamEngine” , provide routers intended for 
multiplayer games but which are also capable of providing 
benefits to other real-time/interactive traffic applications. 

However, a limitation of StreamEngine is that it relies 
solely on local packet inspection to classify traffic into QoS 
classes. Packet inspection involves examining multiple fields 
in the packet (usually the IP header, often the transport 
header and optionally the application-specific transport 
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payload) and inferring what type of traffic is being examined 
based on information such as “well-known”  TCP/UDP port 
numbers, known IP addresses and data contents. There are a 
number of weaknesses with this technique.  

The first is that it relies on being able to inspect the inner 
packet contents for meaningful information. Unfortunately 
this is not always possible (for example, if the IP flow is 
encrypted). 

The second problem is that well-known port numbers are 
not a reliable method of classifying traffic. This technique 
assumes that a particular port number is always used by a 
particular application and any flows to/from the particular 
port involve the particular application. This assumption is 
often untrue. (For example, the online game Quake 3 often 
uses UDP port 27960, but there’s nothing preventing other 
applications also generating traffic that uses UDP port 
27960.) 

The third difficulty is that application layer protocols can 
be very complex, their specifications are not always public 
and they regularly change. The effort required in 
implementing accurate classifiers and keeping them up to 
date is very high. Furthermore, this approach is restricted by 
the often very limited performance of such devices in terms 
of processing speed and memory. 

Finally, implementations using this technique require 
frequent external updates to maintain the rule list, which 
maps packet characteristics to traffic types.  

Some networking equipment manufacturers such as Cisco 
Systems Inc. have integrated “automated”  QoS features [8], 
[9] into their high-end switches and routers. These features 
allow users to prepare one set of QoS “rules”  on one device 
that will then distribute the same rule set to all devices on 
the network that are of the same type and from the same 
manufacturer. The system still requires user intervention to 
define and update the QoS policies and rules manually. 

Allot Communications Ltd. has a family of products 
called NetEnforcer [10] on the market for IP carriers and 
service providers, which aim to provide simplified 
management of bandwidth control and service level 
management. The same problems inherent in the networking 
equipment “automated QoS” solution discussed above apply 
to the NetEnforcer product range. Applications requiring 
prioritisation on a link managed by NetEnforcer need to be 
provisioned manually before they are able to receive the 
QoS they require. 

Although this work is useful and provides the necessary 
building blocks for providing QoS, by itself it lacks 
flexibility. In particular the traffic classifier needs regular 
updates in each CPE. An architecture in which the 
classification can be independent of individual CPEs is 
likely to be more effective.  

III. THE TCAPS ARCHITECTURE 

A. Motivation for TCAPS Architecture 

From the previous discussion there are a number of points 
that have led us to develop a network-centric rather than 
application-centric QoS management architecture.  

The first is that application developers are unlikely to 
include the code for explicit signalling of QoS within their 

application. It restricts the potential networks the application 
is able to run on, requires more knowledge of network 
protocols than the developer is likely to possess and 
increases the software development effort considerably.  

The second factor that has led us to a network-centric 
architecture is that there are already a significant number of 
applications deployed within the network that assume a ‘best 
effort’  service, but could benefit from QoS provisioning. For 
Internet QoS to become a reality, it needs to be implemented 
outside the application.  

In attempting to decide what capabilities the architecture 
should provide, we have noted that Internet links tend to be 
massively over provisioned within the core of the network, 
meaning there is minimal queuing delay and jitter introduced 
in the network core. The majority of network queuing delay 
and jitter comes from the upstream CPE/ISP link. 
Consequently, providing QoS across this link is the goal of 
our proposed architecture. Our architecture does not change 
IP packet fields and does not require every device in the 
end-to-end path between the source and destination CPE to 
inspect the packets in order for QoS to be provided. Our 
architecture includes the automatic classification of real-
time/interactive flows and enables appropriate signalling to 
the required devices to instantiate appropriate QoS for these 
flows.  

Our architecture is a superset of a number of recent 
approaches to providing QoS. Some existing products - for 
example, Ubicom’s StreamEngine technology - could 
become an integral part of our CPE design. More 
importantly, our architecture will enable the central control 
and dynamic update of customized QoS rules for every 
participating CPE. The architecture we propose will still be 
effective regardless of whether or not real-time/interactive 
traffic is encrypted or running on non standard port numbers. 

The architecture defines a mechanism for the automatic 
creation and distribution of customised rules to each CPE 
based on the traffic flowing to and from that CPE. No user 
intervention is required to define which flows contain real-
time/interactive traffic, or to create, update or remove the 
rules that control QoS being given to these flows. (There is 
also potential for our system to distribute DSCP 
classification rules to edge routers on the ISP-side of a 
customer link, to further mark packets heading into the ISP’s 
network.) 

The next section describes the capabilities needed to 
provide the above services. 

B. TCAPS Functionality 

The emphasis of the TCAPS architecture is in providing 
QoS controls across the ‘ last mile’  between the ISP and the 
customer’s CPE. The TCAPS architecture comprises a 
centralised traffic classifier, a signalling protocol, a CPE 
based QoS subsystem (QoS SS) and a QoS subsystem 
interface. 

The purpose of the traffic classifier is to identify traffic 
based on some characteristics. The classifier will run at a 
privileged point in the ISPs network, examining all packets 
going to and coming from each piece of CPE. Using some 
method of classification, traffic flows will be classified into 
two groups: real-time/interactive and everything else. Flows 
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identified as real-time/interactive will be given priority over 
all other traffic travelling via the customer/ISP link. The 
minimum number of priority levels required within the 
system is therefore two: no priority and priority. 

The QoS SS forms the basis of the traffic prioritization 
part of the system. The prioritisation part of the system runs 
at the CPE end of the link to prioritise upstream traffic. The 
prioritisation part of the system can also optionally run at the 
ISP end of the link to prioritise downstream traffic. 
However, this is generally not as much of an issue given the 
common asymmetry between upstream and downstream 
traffic speeds in most access networks. 

The signalling protocol will be used to inform the CPE 
equipment (and optionally the ISP’s equipment) of what 
traffic flows on the link are to be prioritized.  

The QoS subsystem interface needs to be resident in the 
CPE (and optionally the ISP’s equipment) to receive and 
implement the signalling information.  

In Figure 1 we show the major flows of information 
necessary to implement the architecture. A traffic classifier 
monitors traffic to/from the CPE and identifies flows that 
should receive a higher priority. This information is used to 
generate commands to signal the CPE equipment to give 
those flows a higher priority. The commands are transmitted 
using a (new) QoS signalling protocol to the CPE. The 
commands are interpreted by the CPE QoS subsystem 
interface and given to the QoS SS, which then uses priority 
queuing or scheduling to give priority to the identified flows. 

 
 

CPE 

Customer 
Premises 

ISP 
Premises 

Internet 
  

 Classifier 

QoS 
Subsystem 

QoS Protocol 

QoS SS 
Interface 

 

Figure 1: TCAPS Architecture – Major  Information 
Flows 

The system will function in parallel with legacy CPE to 
form a heterogenous network of partially TCAPS aware 
devices. Devices that do not communicate using the TCAPS 
signalling protocol will be ignored by the traffic classifier, 
and will function as usual. This allows the possibility to roll 
out value added services incrementally without the 
requirement that all customers must upgrade to TCAPS 
enabled equipment. 

Whilst providing prioritisation to real-time/interactive 
traffic is the current focus of this architecture, this is not the 
only QoS mechanism that can be used. The available QoS 
mechanisms are highly dependent on the implementation of 
the QoS SS. For example, if the QoS SS is capable of 
providing more than two priority levels, it is possible to 
establish classes of priority traffic. This can be used to 
express relationships like: VoIP is more important than 
multiplayer gaming is more important than all other traffic. 
Most QoS SSs also allow explicit bandwidth management, 
which can be used to set more traditional QoS resource 
guarantee conditions e.g. VoIP requires 64kbps of the total 

bandwidth permanently. 
To allow additional features like these to be used 

advantageously within the system, the CPE will be able to 
communicate its capabilities to the traffic classifier. The 
traffic classifier will then be able to utilise this information 
to tailor rules to take advantage of some or all of the CPEs 
capabilities. 

C. TCAPS Functional Groupings 

The allocation of different functions into functional 
groupings will obviously depend on the size of the network. 
In this section we suggest a simple grouping of functions 
suitable for a small ISP.  

Our proposed functional grouping is shown in Figure 2. In 
our model we group the packet classifier into a single device 
- the TCAPS server. The TCAPS server receives a copy of 
all traffic to/from each customer that makes use of TCAPS 
through the use of port mirroring on a switch. In case the 
switch does not support port mirroring, other technology 
such as electrical or optical taps could be used to access the 
traffic. Larger ISPs might have multiple servers, each 
managing a subset of the ISP’s TCAPS enabled customer 
base. 

The TCAPS server first classifies the packets to identify 
whether or not the flow they belong to should be prioritized. 
Then the TCAPS server initiates a protocol exchange with 
the client’s CPE to prioritise that flow. The CPE must be 
able to interpret the QoS signalling protocol commands from 
the TCAPS server. The CPE then uses priority queuing or 
scheduling to give a higher priority to that flow than to other 
flows. Regardless of how the process occurs, the application 
whose flows are being prioritised need not know about it. 
The application can be developed without any knowledge or 
requirements for QoS.  
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Figure 2: TCAPS Architecture – Functional Groupings 

IV. PROTOTYPE DESIGN 

A. Overview 

In our prototype implementation of this architecture we 
plan to use FreeBSD [11] systems for the CPE and the 
TCAPS server. Ultimately we intend implementing the 
system on a commercially available CPE device, but at this 
experimental stage the flexibility of an easily programmed 
system is necessary. 

CPE traffic is identified by the source/destination IP of 
upstream/downstream traffic respectively. An issue with this 
is that ISPs tend to manage IP address assignment via 
DHCP. It is therefore important to maintain a consistent 
mapping of IP address to individual CPE if accurate server 
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to CPE signalling is to be possible. We propose that TCAPS 
CPE embed their MAC address in all signalling 
communications to the server and the server embeds the 
destination CPE’s MAC address in all signalling 
communications to CPE. 

For CPE to server communications, the embedded MAC 
address and the source IP of the signalling communication 
can be used to build a table mapping CPE IP address to CPE 
MAC address. If a signalling communication is received 
with a known MAC address but differing source IP address, 
a change of IP can be inferred and the server can update its 
state accordingly. 

For server to CPE communications, if the embedded 
MAC does not match the CPE’s MAC, the CPE can assume 
to have received the communication in error and ignore it. 

In the event of an IP address change, there will be a 
window of time where the CPE is not able to receive 
signalling communications from the server because of the 
server’s now inconsistent CPE IP to MAC address mapping. 
This length of time will be tuneable by making use of a 
polling signalling communication that occurs periodically 
from the CPE to the server. The length of time between 
polling communications will determine the maximum 
amount of time a server is out of contact with a particular 
CPE. 

The TCAPS server can also record the state of the CPEs, 
enabling downloads of priority rule information following 
CPE or ISP outages. Our prototype will support requests for 
state information from the CPE and initiation of transfer of 
state information from the TCAPS server to the CPE. 

 
We now describe each subsystem in more detail. 

B. Broadband Access CPE 

The broadband access CPE is located at the customer’s 
end of the CPE/ISP link. This device provides the hardware 
and software platform for the QoS subsystem (QoS SS), 
TCAPS client interface and signalling protocol. Figure 3 
shows a block diagram of the CPE. 
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Figure 3: CPE block diagram 

The CPE requires two network interfaces: one connected 
to the Customer Premises (CP) network, and the other 
connected to the broadband access network. In a standard 
broadband access CPE, traffic flowing from the CP network 
to the broadband access and ISP network would normally be 
queued at the CPE in a first in first out (FIFO) manner for 
transit onto the upstream link. This queuing arises from the 
fact that the CP network tends to operate at speeds above 
10Mbps, whereas typical broadband access uplink speeds 
are limited to sub 1Mbps, with 128kbps and 256kbps being 

common among current broadband Internet access plans. 
Queuing at the CPE for the downstream link is unusual, as 
the CP network’s operating speed is usually much higher 
than the broadband access downstream speed. 

The TCAPS broadband access CPE uses priority queuing 
within the CPE device to ensure that higher priority 
realtime/interactive traffic is sent on the upstream link before 
other traffic, even if the other traffic arrived before the high 
priority traffic. 

C. QoS Subsystem 

The QoS SS is responsible for simple packet filtering 
based on IP header and transport header information and 
providing the priority queuing framework. Figure 4 presents 
a block diagram of the TCAPS QoS SS. 

 

Figure 4: Simplified QoS SS block diagram 

The QoS SS block diagram in Figure 4 resembles a 
standard packet filtering subsystem, with the addition of the 
queuing system and client interface blocks. A packet 
filtering subsystem is typically placed in the path of packet 
flow to restrict or modify the flow of packets between source 
and destination. In Figure 4, packets flowing through the 
QoS SS enter via network interface 1 and leave via network 
interface 2, after having traversed the packet filtering and 
queuing subsystem. 

The QoS subsystem is comprised of a standard packet 
filter as described above, with the addition of a QoS module 
that is capable of providing priority queuing. The TCAPS 
client interface interacts with the QoS SS rule parser, rather 
than using human intervention to manage rules. This allows 
remote management of a TCAPS CPE’s QoS SS by a 
controlling TCAPS server via the TCAPS signalling 
protocol and client interface. 

D. TCAPS Server 

The TCAPS server operates at a point in the ISP’s 
network that is capable of inspecting all traffic going to and 
coming from each piece of CPE. The TCAPS server 
provides the hardware and software platform for the traffic 
classifier and signalling protocol TCAPS system blocks. 
Figure 5 shows a block diagram of the TCAPS server. 

 

Figure 5: TCAPS server  block diagram 
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The TCAPS server uses two separate network interfaces: 
one to communicate with and one to receive a copy of all 
traffic from CPEs. It could be argued that both requirements 
could be fulfilled with the use of a single network interface. 
However, depending on how the TCAPS server taps into the 
network it is impossible to use this network interface for the 
QoS signalling. Furthermore the use of two interfaces 
decreases the possibility of CPE traffic interfering with the 
TCAPS server traffic (which includes the signalling between 
the server and the CPE devices).  

The TCAPS server acts as the central management point 
for TCAPS related behaviour. The server is responsible for 
running the TCAPS system components that classify the 
traffic of TCAPS enabled CPE and manage these CPE via 
use of the TCAPS signalling protocol. 

The traffic classifier system component receives traffic 
from CPE via a network tap from the first of the TCAPS 
server’s two network interfaces. Its role is to classify the 
traffic of CPE controlled by the server. The traffic classifier 
also communicates with the CPE for general TCAPS 
administrative issues or priority rule management, by use of 
the TCAPS signalling protocol. All network 
communications are sent via the second of the TCAPS 
server’s two network interfaces. 

V. CONCLUSION 

The TCAPS framework is a feasible approach to 
providing QoS to certain kinds of applications. It is flexible, 
it removes the need for individual CPE to be regularly 
updated with new classifier information and it removes the 
computation burden from the CPE. It enables CPE that are 
not TCAPS capable to coexist with CPEs that are, and 
allows the possibility of enabling QoS across the whole 
network. Nevertheless, there are a number of research issues 
that need investigation to realize the full potential of this 
approach. 

Packet inspection is a slow and cumbersome way to 
identify high priority flows. It is also not necessarily a 
reliable one. We are experimenting with different 
approaches based on machine learning (see [12] and [13]). 
By learning the traffic patterns of certain kinds of traffic, the 
classifier will be able to make decisions about multiple flows 
much more quickly with much less information and 
processing.  Previous work [14], [15], [16] and [17] has 
been done to build synthetic traffic models for real-
time/interactive traffic which could be used effectively in 
this approach. 
Although using a FreeBSD system as a CPE allows great 
flexibility in experimenting with different techniques, we 
hope that this architecture will be widely adopted. 
Consequently, we will investigate the use of this architecture 
with commercial CPE devices that support priority queuing. 

Another important issue is to characterise this work for 
current network access technologies and extend it to those 
that are emerging. How effective is the approach when 
applied to production ADSL or cable modem based 
networks? What of emerging wireless network technologies 
such as IEEE 802.16? 

Security is another issue that needs addressing within this 

architecture. Any external management of customer’s 
networking equipment needs strong authentication.  

Our proposed approach to providing QoS has many 
advantages over other attempts. The main advantage is that 
it removes the need for the application developer to 
implement any QoS functionality, and therefore also works 
with all existing applications. An architecture that 
implements this approach to provision of QoS may finally 
see the widespread deployment of Internet QoS. 
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