
 

    

HET 556 
Design & Development Project 2 

 

 
TCAPS 

Traffic Classification And Prioritisation System 
 
 

Project Final Report 
 
 
  

 
 
 

Student: Lawrence Stewart ID: 2163896 
 

© Lawrence Stewart, 2005



TCAPS Project Final Report 

25/11/2005 © Lawrence Stewart, 2005 i
  
  

Signatures 
 
 
 

Student’s Name: Lawrence Stewart 
 
 
Student’s Signature:   Date:    25/11/2005 
 
 
 
 
 
 
 
Supervisor’s Name: Grenville Armitage 
 
 
Supervisor’s Signature:   Date:    25/11/2005 



TCAPS Project Final Report 

25/11/2005 © Lawrence Stewart, 2005 ii
  
  

Table of Contents 
 

1. Executive Summary.....................................................................................................1 
2. Introduction, Overview & Scope................................................................................3 
3. Literature Survey ........................................................................................................7 

3.1 IntServ (RFC1633) & RSVP (RFC2205) .................................................................................. 7 
3.2 DiffServ (RFC2475) .................................................................................................................... 7 
3.3 MPLS (RFC3031)........................................................................................................................ 7 
3.4 Ubicom Inc. & D-Link Systems Inc........................................................................................... 8 
3.5 High end networking equipment manufacturers ..................................................................... 8 

4. TCAPS Architecture .................................................................................................10 
4.1 Guiding Principles & Design Goals ......................................................................................... 10 
4.2 Architecture Components ........................................................................................................ 10 
4.3 Architecture Configuration Options ....................................................................................... 11 
4.4 Features...................................................................................................................................... 17 
4.5 Deviations from initial design .................................................................................................. 17 

5. TCAPS Technical Overview.....................................................................................19 
5.1 Guiding Principles & Design Goals ......................................................................................... 19 
5.2 Supporting technologies............................................................................................................ 19 
5.2.1 Priority Queuing.................................................................................................................... 19 
5.2.2 The FreeBSD UNIX Operating System................................................................................ 22 
5.2.3 The PF/ALTQ Firewall/Queuing Subsystem........................................................................ 22 
5.2.4 The PCAP Library ................................................................................................................ 22 
5.2.5 The ACE Library .................................................................................................................. 23 

5.3 Deviations from initial design .................................................................................................. 24 
6. TCAPS Detailed Technical Discussion ....................................................................25 

6.1 Signalling Protocol .................................................................................................................... 25 
6.1.1 Rule Management Packet Type ............................................................................................ 25 
6.1.2 Classifier Rule Management Packet ..................................................................................... 29 
6.1.3 Acknowledgment Packet Type ............................................................................................. 30 
6.1.4 Transfer Packet Type ............................................................................................................ 31 
6.1.5 Poll Packet Type ................................................................................................................... 32 
6.1.6 Flow Feature Packet.............................................................................................................. 34 
6.1.7 Client Management Packet Type .......................................................................................... 37 

6.2 Client Interface.......................................................................................................................... 39 
6.3 QoS Subsystem Translator....................................................................................................... 43 
6.4 Flow Sifter.................................................................................................................................. 45 



TCAPS Project Final Report 

25/11/2005 © Lawrence Stewart, 2005 iii
  
  

6.5 Flow Classifier ........................................................................................................................... 47 
6.6 Manager ..................................................................................................................................... 52 

7. Testing & Outcomes ..................................................................................................56 
8. Current TCAPS Limitations ....................................................................................58 
9. Further Work.............................................................................................................60 
10. Conclusion & Recommendations ...........................................................................61 
Acknowledgments..........................................................................................................62 
References.......................................................................................................................63 
Glossary ..........................................................................................................................64 
Appendices......................................................................................................................66 
Appendix A: Conference paper: “An Architecture for Automated Network 
Control of QoS over Consumer Broadband Links” ..................................................67 



TCAPS Project Final Report 

25/11/2005 © Lawrence Stewart, 2005 Page 1 of 67 

1. Executive Summary 
The Traffic Classification and Prioritisation System (TCAPS) project aimed to develop an architecture 
for realtime network traffic classification and prioritisation for use in ISP broadband access networks, 
as well as a prototype of the system. The system aims to address the issue of traffic Quality of Service 
(QoS) for realtime/interactive traffic at the network edge i.e. customer to ISP links, which are typically 
the primary bottleneck in end to end network communication. The system specifically targets the 
upstream CPE to ISP link, which typically tends to be at least 4 times slower than the downstream 
speed, making it the primary bottleneck within the CPE/ISP link. The system provides QoS 
automatically to CPE/ISP network traffic that requires it, doing so without the user or networked 
applications requiring any knowledge of the underlying system. This allows end users to use the 
networked realtime/interactive applications they need, without the concern of these applications’ 
performance degrading as other users on the local LAN begin to compete for resources by using other 
non realtime/interactive networked applications. 
 
The prototype implementation of the system consists of 6 software modules: TCAPS signalling 
protocol, TCAPS QoS subsystem translator, TCAPS client interface, TCAPS manager, TCAPS flow 
sifter and TCAPS flow classifier. 
 
The signalling protocol and QoS subsystem translator modules were implemented as procedural C 
software libraries, in the hope that they may be useful to external individuals/companies wishing to 
integrate TCAPS code into their software and devices. 
 
The TCAPS client interface, TCAPS manager, TCAPS flow sifter and TCAPS flow classifier were 
implemented as C++ applications to decrease development time by use of existing language libraries 
and functionality. 
 
Supporting the software developed as part of the TCAPS project are a number of existing open source 
software solutions. These solutions provided required functionality without the need to build it from 
scratch during the TCAPS prototype development. 
 
Unfortunately due to time constraints, insufficient testing of the TCAPS prototype was able to be 
performed. The prototype was verified for functional correctness and put through some simple stress 
tests, but these did not conclusively evaluate the operational capabilities of the prototype. Of the 
minimal testing that was performed, the prototype was found to function according to specification. 
The flow sifter and flow classifier modules were stress tested with 100Mbit line rate traffic and 10 
concurrent flows or less. Packet sifting and classification were found to be able to handle this load 
running on commodity PC hardware. 
 
Overall, the TCAPS architecture has proven itself to be a robust, scalable and efficient means for 
providing automated QoS over consumer broadband links. The prototype implemented for the TCAPS 
project has proven the feasibility of the architecture and feasibility of overall approach to solving the 
problem of broadband QoS provision. 
 
In order to move the project towards commercialisation, a number of limitations and items of further 
work would need to be seen to. The most pertinent being: 
• Selecting and implementing a means for TCAPS node IP dissemination. 
• Implementing ISP side TCAPS module polling to handle node failures. 
• Integrating a security framework into or around TCAPS. 
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• Getting CPE manufacturers on board and developing their own TCAPS enabled CPE. 
• Running an ISP based TCAPS trial. 
An opportunity for collaboration with industry has been identified, in the form of Ubicom Inc. and 
their StreamEngine technology. This technology provides a great deal of the functionality required by 
a TCAPS enabled CPE, and would only need to be modified to accept TCAPS signalling information 
in order to integrate into the TCAPS architecture. A partnership of some form with Ubicom Inc. would 
expedite the time to market for TCAPS enabled CPE. This would be a beneficial outcome if the 
decision was made to commercialise the project. 
 
Overall, the TCAPS project has met it design goals, has a functioning prototype capable of 
demonstrating a majority of the features important to the TCAPS architecture and is therefore 
considered to have been successful. 
 
It is the recommendation of this report that the TCAPS architecture is a feasible framework to 
commercially pursue for the provisioning of automated QoS over consumer broadband links. The 
current TCAPS prototype implementation met its design requirements, but falls short of commercial 
viability, and requires additional development work and testing to bring it up to a commercial level. 
The estimated time frame for the completion of the critical additional work required for TCAPS 
commercial viability is 6 to 12 months. 
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2. Introduction, Overview & Scope 
With the increase in and affordability of broadband access roll out in the forms of Asymmetric Digital 
Subscriber Loop (ADSL), Cable Internet and 802.11x infrastructure, comes the real possibility of 
useable, realtime services to the home. Examples include multiplayer online networked games, 
streaming audio/video content and voice over Internet Protocol (VoIP). There is also the next 
generation of high speed broadband network architectures to consider such as ADSL2 and IEEE 
802.16 etc. which are going to support high definition digital television on demand and the like, along 
with the previous suite of services. 
 
However, a heterogenous network traffic environment such as a home or small business LAN makes 
demands on the underlying network infrastructure that can cause it to become a bottleneck e.g. 
someone making a VoIP call whilst someone else uploads a large file. The VoIP traffic, being realtime 
and interactive, is far more sensitive to queuing delays and network jitter than the TCP file transfer. 
The net result in this scenario is that the phone conversation degrades significantly, whilst no major 
difference is observed for the file transfer except perhaps for a decrease in the rate of throughput. 
 
So how can we ensure these two types of network traffic can coexist happily? The solution proposed 
by our solution involves separating them into two groups: realtime/interactive and the rest. Once 
separated, we can prioritise the first group and ensure any special requirements for this traffic class are 
met. The process of having this occur dynamically and without any user/administrator or application 
intervention is a new idea within the problem space. 
 
The Traffic Classification and Prioritisation System (TCAPS) project aimed to develop an architecture 
for realtime network traffic classification and prioritisation for use in ISP broadband access networks, 
as well as a prototype of the system. The system aims to address the issue of traffic Quality of Service 
(QoS) for realtime/interactive traffic at the network edge i.e. customer to ISP links, which are typically 
the primary bottleneck in end to end network communication. The system specifically targets the 
upstream CPE to ISP link, which typically tends to be at least 4 times slower than the downstream 
speed, making it the primary bottleneck within the CPE/ISP link. The system provides QoS 
automatically to CPE/ISP network traffic that requires it, and does so without the user or networked 
applications requiring any knowledge of the underlying system. The system is also be able to work in 
parallel with legacy CPE equipment that is not TCAPS enabled, ensuring incremental uptake by 
existing ISPs and broadband access users is possible. 
 
The final TCAPS architecture and design consists of 6 core modules: the TCAPS signalling protocol, 
QoS subsystem translator, client interface, flow sifter, flow classifier, and manager. These modules 
have been implemented completely in software for speed of development and flexibility purposes. 
Together, these 6 modules interoperate to provide the TCAPS prototype system capable of addressing 
the problem outlined above. 
 
Figure 1 illustrates a typical home broadband connection scenario. The customer premises (CP) side of 
the link is a 100Mbps switched Ethernet LAN, and has 3 separate services being used on it: VoIP, web 
browsing and online interactive gaming. The CP network is connected to the ISP and Internet via a 
512kbps downstream, 128kbps upstream broadband access Internet connection, which is a typical 
configuration for current broadband access Internet plans [1]. 
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Figure 1. Typical home broadband connection scenario 
The major problem being addressed by TCAPS is the bottleneck being caused by the 100Mbps local 
LAN squeezing traffic onto the 128kbps upstream broadband link, which is 780 times slower than the 
local LAN. The serialization delay for a 1500 byte packet being sent upstream at 128kbps from the 
CPE is 93.75ms. This is significant in networking terms, where inter-packet arrival times tend to be 
sub 100ms. A packet arriving half way through the serialization process will be queued before being 
sent, and the queue will grow if more packets arrive during the serialization time. This can result in 
unpredictable packet queuing delays and jitter, caused by waiting in a queue that has heterogenous 
packets of different sizes in it. 
 
Consider the following example: if a 100 byte packet gets stuck behind a 1500 byte packet that has 
just started getting serialized onto a 128kbps upstream link, the result is a 94ms wait for the 100 byte 
packet. Realtime/interactive services such as VoIP and online interactive gaming, tend to rely on small 
packets (typically well under 500 bytes) being sent at quick, regular intervals [2]. 
 
Now consider a realtime/interactive traffic flow sending 100 byte packets upstream at regular intervals 
of 47ms, with serialization delay ~6ms at 128kbps. A non realtime/interactive flow is also sending 
1500 byte packets upstream at random intervals, with serialization delay ~94ms at 128kbps. Figure 2 
shows a time sequence diagram of the CPE’s upstream traffic queue, with 100Mbps traffic entering 
from the local LAN, and 128kbps traffic being sent to the ISP/Internet via the broadband access 
network connection. 
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Figure 2. Time sequence diagram for CPE upstream queue 
One of the 100 byte packets gets stuck behind a 1500 byte packet that has just started getting serialized 
onto the upstream link. This leads to a 94ms wait for the 100 byte packet, in which time a 1500 byte 
packet and two 100 byte packets join the queue. The first 100 byte packet begins being transmitted 
94ms after it arrived in the queue, and the 1500 byte packet behind it begins being transmitted 6ms 
after that. In the 94ms it takes to transmit the second 1500 byte packet, 2 two more 100 byte packets 
join the queue. The four 100 byte packets are then sent every 6ms until the queue is emptied. The 
queuing delays for each of the 100 byte packets in order of transmission are 94ms, 147ms, 106ms, 
65ms and 24ms. 
 
The end result of this scenario is that a traffic flow that should have consistent 47ms inter-packet 
arrival times (when not subjected to queuing delays), experiences inter-packet arrival times of 141ms, 
194ms, 153ms, 112ms and 71ms. If the realtime traffic flow belonged to a VoIP conversation, for 
example, these large deviations from the expected inter-arrival times would result in degraded call 
quality and an unpleasant phone conversation. 
 
Suppose now we established two queues within the CPE for upstream traffic. One of these queues is 
configured to have delay sensitive realtime/interactive traffic placed in it and the other queue is 
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configured to have all other traffic placed in it. If the delay sensitive queue was configured to have 
transmission priority onto the upstream link ahead of the other queue, then we would expect 
realtime/interactive traffic to have reduced queuing times, compared to the example of Figure 2. This 
premise forms the basis of the TCAPS prototype solution to the problem discussed above, and will be 
examined in more detail in section 5.2.1 of this report. 
 
Queuing at the ISP for the downstream link is typically not as much of a problem as it as at the CPE 
for the upstream link. This is because the downstream speeds tend to be much higher (typically at least 
4 times greater) than upstream speeds for typical broadband access Internet plans. This means that 
packets are able to be sent downstream 4 times faster than they can upstream, and the serialization 
delay is 4 times shorter. The serialization delay for a 1500 byte packet being sent downstream at 
512kbps from the ISP is 23.43ms. Even if a packet from a realtime/interactive flow gets queued 
behind a 1500 byte packet, it will only have to wait 24ms instead of 94ms as before. This observation 
validates the need to particularly focus on a solution that reduces upstream realtime/interactive 
network traffic queuing delays and jitter. However, the downstream link would still benefit from a 
solution that reduced queuing delays and jitter as illustrated in the above example, and is considered as 
part of the TCAPS architecture. 
 
 



TCAPS Project Final Report 

25/11/2005 © Lawrence Stewart, 2005 Page 7 of 67 

3. Literature Survey 
3.1 IntServ (RFC1633) & RSVP (RFC2205) 
Integrated Services (IntServ) [3] and Resource ReSerVation Protocol (RSVP) [4] were defined by the 
IETF in 1994 and RSVP was revised in 1997 in order to attempt to solve the problem of dynamic QoS 
provision for realtime/interactive traffic traversing the Internet. The IntServ/RSVP model used 
signalling protocol messages along the network path between sender and receiver, and each node 
along the path would store QoS state for the flow requesting guaranteed resources. 
 
The major problem with this approach is that applications wishing to utilise IntServ/RSVP for their 
QoS requirements need to be written to utilise the RSVP signalling protocol. This would require all 
realtime/interactive application developers to integrate the RSVP stack into their programs, which is 
not going to happen. TCAPS is able to perform dynamic QoS provision without the need for the 
realtime/interactive application to intervene at all, and will work with all existing applications written 
before the development of TCAPS, unlike the IntServ/RSVP model. 

3.2 DiffServ (RFC2475) 
Differentiated Services (DiffServ) [5] was defined in 1998 by the IETF to provide an IP QoS solution 
for use in autonomous systems. DiffServ works by setting bits that correspond to a QoS traffic class in 
the IP header DS field, which are then inspecting by DiffServ enabled routers along the path and 
provided with the QoS specified for that particular QoS traffic class. 
 
The major problem with this approach is that every router along the network path needs to be DiffServ 
enabled and have the same understanding of which DS field bits correspond to which QoS traffic class 
to ensure proper QoS is given to the correct packet flows. This limits its usefulness to routing within 
an autonomous system, where all routers are administered by the same administrator(s). 
 
Internet links tend to be massively over provisioned, which means there is very minimal delay/jitter 
introduced in the network core. The majority of network delay/jitter comes from the CPE/ISP link, 
which is the area TCAPS is focused on. TCAPS does not change IP packet fields and does not require 
every device in the end to end path between the CPE and TCAPS server to inspect the packets in order 
for QoS to be provided. 

3.3 MPLS (RFC3031) 
The MultiProtocol Label Switching (MPLS) [6] Architecture was defined by the IETF in 2001 as an 
architecture to simplify the way routers make packet forwarding decisions. Instead of each router 
along the network path examining the IP packet header and making a forwarding decision based on 
this information, MPLS only requires the packet header to be analysed once.  MPLS then adds a label 
(short, fixed length value) to the packet, both of which are transmitted to the next hop, where the label 
is matched in a lookup table, a new label is added and the packet is sent to the next hop. The label is 
used as the basis for all forwarding decisions, and allows devices that are not capable of doing IP 
header inspection or not capable of doing the IP header inspection fast enough to perform routing 
functionality. One of the benefits of MPLS is that a packet’s class of service can be partially or 
completely inferred from the label, which allows for simplified QoS classification and management. 
 
MPLS still suffers from the same drawbacks as DiffServ, in that every node along the network path 
has to support MPLS in order to provide QoS based on MPLS labels, and each MPLS enabled device 
needs to know what MPLS labels map to a particular class of service in order to provide consistent 
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QoS. An administrator also needs to define the initial classification criteria/policies to determine 
which types of flows should be assigned a particular MPLS label based on their traditional IP header 
inspection. 
 
TCAPS’s ability to automatically classify realtime/interactive flows and signal the required devices to 
instantiate appropriate QoS for these flows ensures it is not affected by these problems and is a 
superior solution for the problem being addressed by the TCAPS project. 

3.4 Ubicom Inc. & D-Link Systems Inc. 
Ubicom Inc. [7] began marketing a technology titled “StreamEngine” [8] in late 2004, which appears 
to provide the same functionality as TCAPS on the CPE to ISP portion of the network link. D-Link 
Systems Inc. have released what they claim to be the first series of “gaming” routers, using what they 
call “GameFuel” technology [9], which is based on Ubicom’s StreamEngine technology. These routers 
are, as their name suggests, being pushed at the lucrative online multiplayer game market, although the 
technology is technically capable of providing benefits to other realtime/interactive traffic 
applications/services as well. 
 
The major difference between TCAPS and StreamEngine is that StreamEngine relies on packet 
inspection techniques to perform its classification. Packet inspection involves examining the entire 
contents of an IP packet and inferring what type of traffic is being examined based on information 
such as well known TCP/UDP port numbers, known IP addresses and data contents.  The problems 
with this technique are: 
1. It relies on being able to inspect the inner packet contents for meaningful information, which is not 

possible if a particular IP flow is encrypted for example 
2. Well known port numbers are just that, well known, and can be changed very easily. This 

technique assumes that a particular port number is always used for a particular service and will 
assume any flows to/from the well known port number are for the well known application, which 
is not always true 

3. Application layer protocols regularly change and cannot be relied upon as an accurate source of 
information 

4. Implementations using this technique require frequent external updates to keep the rule list 
mapping packet characteristics to traffic type up to date and reliable.  

TCAPS can be considered to be a superset of Ubicom’s StreamEngine technology, with some major 
advantages. TCAPS is able to centrally control and dynamically update customised QoS rules for each 
piece of CPE, whereas StreamEngine needs to be given a complete external rule set from the 
manufacturer in order to provide new or updated QoS rules and functionality. TCAPS can also classify 
and prioritise realtime/interactive traffic that is encrypted or running on non standard port numbers. If 
Ubicom’s StreamEngine technology could be modified to accept signalling commands from the 
TCAPS manager, it could become part of the TCAPS solution. 

3.5 High end networking equipment manufacturers 
High end networking equipment manufacturers such as Cisco Systems Inc. and Alcatel 
Communications have integrated “automated” QoS features into their high end switches and routers. 
The term “automated” is slightly misleading in this sense. What these features allow is users to prepare 
one set of QoS “rules” on one device that will then distribute the same rule set to all devices on the 
network that are of the same type and from the same manufacturer. The system still requires user 
intervention to define/update the QoS policies/rules manually. 
 



TCAPS Project Final Report 

25/11/2005 © Lawrence Stewart, 2005 Page 9 of 67 

Allot Communications Ltd. have a family of products called NetEnforcer [10] on the market for IP 
carriers and service providers, which aim to provide simplified management of bandwidth control and 
service level management. The same problems inherent in the networking equipment “automated 
QoS” solution discussed above apply to the NetEnforcer product range. Applications requiring 
prioritisation on a link managed by NetEnforcer need to be provisioned manually before they are able 
to receive the QoS they require. 
 
TCAPS is able to automatically create and distribute customised rules to each piece of CPE based on 
the traffic flowing to and from the CPE. No user intervention is required to define which flows contain 
realtime/interactive traffic or to create, update or remove the rules that control QoS being given to 
these flows. 
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4. TCAPS Architecture 
The TCAPS architecture has evolved since its initial inception into a robust, scalable and efficient 
architecture for automated QoS provision over consumer broadband links. The following sub-sections 
will recap some of the system’s guiding principles and design considerations, followed by a look at the 
resulting architecture, its features and evolution. 

4.1 Guiding Principles & Design Goals 
The high level guiding principles and design goals behind the current TCAPS architecture are outlined 
below: 
• Module software should be compatible with industry standard platforms and environments where 

possible. 
• TCAPS enable CPE should be backwards compatible with standard CPE i.e. a TCAPS enable CPE 

should fall back to functioning as a standard CPE when TCAPS network nodes are unavailable. 
• The architecture should not affect non TCAPS related network operations/connectivity. 
• The system should attempt to minimise the introduction of additional latency and jitter on non 

realtime/interactive traffic where possible, whilst ensuring that the focus remains on minimising 
latency and jitter for realtime/interactive traffic. 

• The system should be able to classify packet flows even if the packet contents are encrypted. 
• The architecture should be able to integrate an external security framework to provide additional 

system security. 
• The architecture and implementation should adhere to any relevant existing standards where 

possible. 
• The architecture should provide simple to manage scalability and redundancy by way of modularly 

designed components. 

4.2 Architecture Components 
The TCAPS architecture consists of 4 mandatory components and 1 optional component, all of which 
can be classified as either client side or ISP side. 
 
The broadband access CPE device is the only mandatory client side TCAPS component, and resides at 
the customer premises. It is responsible for prioritising the transmission of realtime/interactive traffic 
onto the upstream link, as instructed to do so by the ISP side TCAPS Manager component. 
 
The mandatory ISP side TCAPS components are the Manager, Flow Sifter and Flow Classifier, which 
all reside within the ISPs network. These components are all software applications, and should be 
thought of independently to the underlying hardware that is required to run them. They communicate 
with each other using UDP over IP, and therefore can be thought of independently of one another, as 
long as there is IP network connectivity between them. 
 
The Manager component is responsible for managing the TCAPS enabled CPE. It performs 
administrative duties as well as signalling prioritisation rules to client CPE. It is the only ISP side 
component that communicates with CPE. 
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The Flow Sifter component is responsible for sifting client traffic into flows, calculating statistical 
features for each flow and sending these features to the Flow Classifier for classification. 
 
The Flow Classifier component is responsible for classifying realtime/interactive client flows based on 
the statistical flow features received from the Flow Sifter. Flows identified as realtime/interactive are 
signalled to the Manager, which then instructs the client to prioritise the particular flow. 
 
The ISP downstream QoS device is an optional ISP side TCAPS component. The ISP downstream 
QoS device does for the ISP to CPE downstream link what the TCAPS enabled CPE does for the CPE 
to ISP upstream link. That is, it prioritises realtime/interactive client traffic flows travelling 
downstream. 

4.3 Architecture Configuration Options 
With a basic understanding of the TCAPS components, let us examine the component configuration 
options available within the architecture. 
 
The conventions used in the following diagrams are as follows: 
• Nodes highlighted in red actively participate in the functioning of TCAPS 
• Links highlighted in red carry TCAPS signalling information between the nodes 
• An arrow on the end of a line indicates a unidirectional flow of network traffic in the direction 

pointed to by the arrow head 
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Figure 3 illustrates the simplest form of TCAPS deployment, building on the scenario presented in 
Figure 1. 

 
Figure 3. TCAPS architecture, simplest configuration 
Figure 3 introduces a single additional server to the ISP’s network, which groups all ISP side TCAPS 
components onto one physical machine. This machine is responsible for monitoring client flows, 
classifying realtime/interactive client flows and managing TCAPS enabled CPE. The unidirectional 
flow into the server from the router is a network tap of all CPE/ISP traffic. This tap is used by the flow 
sifter to perform its functionality. The network link between the server and ISP network cloud is used 
for all communications with the ISP network and CPE being managed by the server. 
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Figure 4 provides a view of Figure 3 with multiple clients. The client home network is now 
represented as a network cloud, and we can see that the single TCAPS server is able to concurrently 
manage all of these clients. 

 
Figure 4. TCAPS architecture, simplest configuration with multiple clients 
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Figure 5 is beginning to show the flexibility provided by the networked ISP side software components. 

 
Figure 5. TCAPS architecture, moderately complex configuration with multiple clients 
In order to accommodate more users, the individual components can be separated from each other and 
run on separate physical machines. The flow sifter requires a network tap of all CPE/ISP traffic, so it 
is slightly limited as to where it can be placed within the ISP network. However, the manager and flow 
classifier have no such restrictions, and simply need IP connectivity between themselves, the flow 
sifter and the client CPE devices. 
 
The reason for “client 8” being black instead of red requires some explanation. The architecture is 
designed to allow standard CPE connecting to a TCAPS enabled ISP to function as they would in a 
non TCAPS enabled ISP. We can see that the path to the Internet for “client 8” is not reliant upon 
passing through a piece of TCAPS infrastructure and therefore perceives no difference in the network. 
This satisfies the TCAPS design goal relating to interoperability. An ISP deploying TCAPS in their 
network will not require all customers to replace their CPE with new TCAPS enabled devices. Rather, 
only customers wishing to take advantage of TCAPS will need to replace (or in some cases update) 
their existing modem. 
 
It should also be noted that TCAPS enabled CPE differ from standard CPE in two areas that are not 
critical to the device’s ability to function as a standard CPE. This means that TCAPS enabled CPE can 
function as regular CPE if the ISP they are connecting to is not TCAPS enabled, or if one or more of 
the ISP’s mandatory TCAPS component servers has failed. This ensures there is a safe fall back mode 
in the event of no TCAPS service being provided, and means the user will still have network 
connectivity. 
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Figure 6 demonstrates the full flexibility and scalability of the TCAPS architecture. 

 
Figure 6. TCAPS architecture, complex configuration with multiple clients 
When one physical server for each of the TCAPS components is insufficient to handle all of the ISP’s 
clients, additional servers for each TCAPS component type can be added to form component clusters. 
This ability to scale hardware requirements linearly with demand ensures ISPs do not need to worry 
about complex capacity planning. When one of the component clusters appears to be working close to 
capacity, another physical machine can be added to the cluster to bring the overall workload down. 
The ability to cluster components also provides redundancy in the event that one of the cluster nodes 
fails. 
 
It should be noted that while Figure 6 shows the cluster sizes for each of the TCAPS components to 
have grown by the same amount from Figure 5, this is not a requirement. For example, in the current 
prototype implementation, the flow sifter is the most hardware intensive application, while the flow 
classifier and manager are not overly intensive. We could therefore have grown the flow sifter cluster 
to 5 nodes and the flow classifier and manager clusters to only 2 nodes to make the most efficient use 
of our hardware resources. 
 
The redundancy, scalability and ability to efficiently deploy hardware resources where they are most 
required satisfy a number of the overall TCAPS design goals. 
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As a final capability of the TCAPS architecture, Figure 7 illustrates the addition of the optional ISP 
downstream QoS device. It should be noted that this device does not interfere with the traffic of non 
TCAPS enabled CPE, thus retaining the interoperability discussed in the previous examples. 
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Figure 7. TCAPS architecture, complex configuration with multiple clients and ISP downstream QoS device 
Whilst Figure 7 shows the ISP downstream QoS device as an additional machine in the path of 
ISP/Internet traffic travelling towards the CPE, it is anticipated that this device’s functionality would 
be build into the ISP’s client side router in a commercial implementation. 
 
However, queuing at the ISP for the downstream link is typically not as much of a problem as it as at 
the CPE for the upstream link. This is because the downstream speeds tend to be much higher 
(typically at least 4 times greater) than upstream speeds for typical broadband access Internet plans. 
This means that packets are able to be sent downstream 4 times faster than they can upstream, and the 
serialization delay is 4 times shorter. The serialization delay for a 1500 byte packet being sent 
downstream at 512kbps from the ISP is 23.43ms. Even if a packet from a realtime/interactive flow 
gets queued behind a 1500 byte packet, it will only have to wait 24ms instead of 94ms as before. This 
observation validates the need to particularly focus on a solution that reduces upstream 
realtime/interactive network traffic queuing delays and jitter. However, the downstream link would 
still benefit from the TCAPS solution in the same way as the upstream link would. Utilising TCAPS 
on the downstream link has therefore been made an optional part of the architecture. This is to cater 
for situations where the costs of implementing TCAPS on the downstream link may outweigh the 
benefits provided. 
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4.4 Features 
The current TCAPS architecture provides a significant array of features aimed at simplifying the 
management of QoS provisioning and increasing the usability of realtime/interactive services over 
broadband network connections. The following list recaps the feature set provided by the TCAPS 
architecture: 
• Redundancy through ability to cluster ISP side TCAPS components 
• Scalability through ability to cluster ISP side TCAPS components 
• Hardware resource optimisation through ability to grow component clusters independently of each 

other 
• CPE to ISP upstream realtime/interactive traffic prioritisation 
• Optional ISP to CPE downstream realtime/interactive traffic prioritisation 
• Deployment flexibility through ability to group or split mandatory ISP side TCAPS components in 

any fashion on physical hardware 
• Minimal requirements placed on TCAPS enabled CPE, as most of the hardware intensive work is 

done by the ISP side components 
• Interoperability through ability for TCAPS enabled CPE and standard CPE to coexist within a 

TCAPS enabled ISP network 
• Backwards compatibility through ability for TCAPS enabled CPE to function as standard CPE 

when ISP TCAPS components are not present or have failed 
• Each client’s traffic is individually monitored and classified, which results in customised 

prioritisation rules being generated for each client 
• Classification is performed based on the statistical features of flows rather than specific traffic 

characteristics, which provides the ability to classify encrypted flows 

4.5 Deviations from initial design 
The implementation phase of the TCAPS project has seen one significant change made to the overall 
TCAPS architecture, which will briefly be discussed and justified. 
 
The original design of the ISP side of the TCAPS system incorporated the optional ISP downstream 
QoS device, and a device called the TCAPS server. The TCAPS server was functionally equivalent to 
the single TCAPS machine shown in Figure 4. The difference is that the software components in the 
original TCAPS server were not networked, unlike the components in the current architecture. 
 
Like the current architecture, increasing the TCAPS client capacity in the previous design required the 
deployment of additional TCAPS servers. If each of the pieces of functionality provided by the 
TCAPS server (managing, flow sifting and flow classifying) were utilising as many resources as each 
other, then this solution would have been as efficient as the current architecture. However, some 
further research and experimentation during the early implementation stage showed that not all three 
pieces of functionality did use the same amount of resources. Flow sifting was found to consume 
significantly more resources than the other two pieces of functionality. 
 
With this in mind, having followed through with the old design would have resulted in inefficient use 
of hardware resources. Flow sifting would have been limiting a server’s ability to handle more clients, 
rather than flow classification or client management. This would have resulted in additional servers 
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being added which may not have been required had the individual pieces of functionality been running 
on separate hardware. 
 
By modifying the architecture to its current state, the ISP administrator is able to group or split the 
three pieces of functionality depending on available hardware resources and client capacity 
requirements, and can assign better hardware to the functionality that requires the most resources. 
 
Another minor benefit of this architecture change is the ability to move the flow classification and 
manager functionality to other places within the ISP’s internal network (or even outside the ISPs 
network if required). This provides additional deployment flexibility to the ISP network administrator. 
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5. TCAPS Technical Overview 
Implementing the TCAPS prototype has required a great deal of technical research, skill development 
and expansion of existing knowledge. The current TCAPS prototype has been implemented entirely in 
software for speed of development and deployment flexibility. The use of industry leading 
technologies, careful procedural/object oriented software design and advanced software programming 
features such as multithreading and raw packet sniffing ensure the software is robust, maintainable and 
scalable. The following sub-sections will recap some of the system’s technical guiding principles and 
design considerations, followed by a look at the resulting components, their technical features and 
evolution. 

5.1 Guiding Principles & Design Goals 
The TCAPS technical guiding principles and design goals are a specialised subset of the TCAPS 
architectural guiding principles and design goals. They provide more stringent goals for the actual 
implementation of the system, and are outlined below: 
• External software used in the system or software developed for the system should be cross 

platform where possible to allow maximum deployment flexibility. 
• The system should make use of existing open source code where the release license permits and it 

is feasible to do so. 
• Network overhead caused by the system should be kept below 0.5Mb per CPE/ISP link per day. 
• The system should be able to classify IPsec encrypted packet flows. 
• The system should be able to run on commodity and server grade hardware. 
• The system should adhere to the existing standards for Ethernet, IPv4, IPv6, TCP and UDP where 

relevant. 
• The system should be able to identify realtime/interactive flows within 20 seconds of the flow 

beginning. 
• System must be able to support 10Mbit line rate traffic and should be able to handle 100Mbit line 

rate traffic running on commodity hardware. 

5.2 Supporting technologies 
A number of supporting technologies have been used in the development of the TCAPS prototype 
system. They provided mature solutions to some of the requirements of various TCAPS modules, and 
were incorporated where possible to reduce development time and effort. 
5.2.1 Priority Queuing 
Priority queuing was the technology selected to provide prioritisation functionality in both the 
broadband access CPE and optional ISP downstream QoS device. Priority queuing is a widely 
implemented QoS mechanism in many commercial and open source QoS systems. 
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Figure 8 illustrates the operational logic of a simple two queue priority queuing subsystem. 

 
Figure 8. Priority queuing subsystem operation logic 
Figure 9 and Figure 10 illustrate the same example discussed earlier in Figure 2, but with a priority 
queue (in red) for realtime/interactive traffic, and another queue (in black) for other traffic. 
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Figure 9. Time sequence diagram for CPE with 2 upstream queues, 0 – 94ms 
The priority queuing system behaves exactly the same as the normal queuing system up to t=94ms. 
This is because once a packet begins being serialized onto the upstream link, it cannot be stopped. 
Therefore, the realtime/interactive packet that arrives just after the 1500 byte packet at t=0.06ms has to 
wait until the 1500 byte packet is transmitted, which finishes at t=94ms. 
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The affect of the priority queuing is visible in the time after t=94ms, which is shown in Figure 10. 
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Figure 10. Time sequence diagram for CPE with 2 upstream queues, 100 – 206ms 
We can see at t=100ms that the first 100 byte packet has been sent, as in the Figure 2 example. 
However, instead of the second 1500 byte packet beginning transmission, the second 100 byte packet 
waiting in the priority queue is transmitted instead, followed by the third 100 byte packet that was 
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waiting behind the second. At t=112ms, the priority queue is finally empty and the upstream link is 
clear for the second 1500 byte packet to begin transmission. The remainder of the diagram shows two 
more 100 byte packets arriving a the priority queue and having to wait for the second 1500 byte packet 
to finish transmission. 
 
The end result of this scenario is that a traffic flow that should have consistent 47ms inter-packet 
arrival times (when not subjected to queuing delays), experiences inter-packet arrival times of 141ms, 
100ms, 59ms, 112ms and 71ms. If we compare these times with the normal queuing example times of 
141ms, 194ms, 153ms, 112ms and 71ms seen in Figure 2, we see same or smaller queuing times in the 
priority queuing example. 
 
It is certainly not a perfect solution, but the most important aspect of the results is that priority queuing 
constrains the maximum queue wait to the serialization delay of the largest packet that could end up in 
the queue. For example, if an additional two 1500 byte packets had entered the non-priority queue at 
t=0ms, the delay times for the last two 100 byte packets at t=206ms would remain unchanged. This 
comes as a result of them being given priority on the upstream link at t=206, regardless whether 
anything exists in the non-priority queue. 
5.2.2 The FreeBSD UNIX Operating System 
The FreeBSD UNIX operating system [11] is an open source operating system released under the 
revised BSD licence. It provides a comprehensive array of features and applications useful for 
providing any sort of network service platform, making it an ideal choice as the development platform 
for the TCAPS system prototype. 
5.2.3 The PF/ALTQ Firewall/Queuing Subsystem 
The PF/ALTQ [12] [13] firewall and queuing subsystem is an open source, *BSD UNIX based system 
for IP packet firewalling and queuing. It provides a priority queuing implementation and comes 
included in the FreeBSD operating system, making it an ideal choice for the QoS subsystem used 
within the prototype broadband access CPE. 
5.2.4 The PCAP Library 
The PCAP library (libpcap) [14] is an open source software library written in the C programming 
language, released under the revised BSD licence. It provides a cross platform API for sniffing raw 
packets from a network interface, independent of the more traditional operating system network 
sockets API. 
 
libpcap has been used in the TCAPS flow sifter module to provide raw (OSI layer 2) packet sniffing 
capabilities to the software. libpcap allows the flow sifter to sniff packets from a network interface that 
has no outgoing communications capabilities i.e. a network tap. This satisfies the TCAPS design goal 
relating to minimal impact, as the flow sifter does not need to be placed in the CPE/ISP 
communications path. Instead, the CPE/ISP communications path can remain unchanged, and a simple 
tap of the traffic travelling over the path can be provided to the flow sifter. 
 
The fact that libpcap runs on many platforms, including Microsoft Windows, Linux, *BSD UNIX and 
Mac OS X, means the flow sifter is not limited to running on a specific operating system. This satisfies 
the TCAPS design goal relating to maximising cross platform compatibility. 
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5.2.5 The ACE Library 
The Adaptive Communications Environment library (libACE) [15] is an open source software library 
written in the C++ programming language, released under a licence very similar to the revised BSD 
licence. It provides a comprehensive, cross platform solution to developing high-performance and 
real-time communication services and applications1. Figure 11 provides an overview of the 
components and frameworks provided by the ACE. 
 

 
Figure 11. ACE overview (taken from http://www.cs.wustl.edu/~schmidt/ACE-overview.html) 
 
libACE has been used extensively in all of the C++ applications developed as part of the TCAPS 
prototype. It has been primarily used to provide threading and sockets related functionality to the 
applications, and has significantly reduced the development time for these aspects of the TCAPS 
software. 
 
Using libACE not only simplifies the amount of development work required to build a C++ network 
application, but also allows the software to be run on any platform ACE runs on. The list of supported 
platforms is quite comprehensive, with Microsoft Windows, Mac OS X, Linux and *BSD UNIX all 
supported. The use of libACE by TCAPS therefore affords ISPs a great deal of flexibility in terms of 
the choice of platform for their TCAPS deployment. This satisfies the TCAPS design goal relating to 
maximising cross platform compatibility. 

                                                 
1 http://www.cs.wustl.edu/~schmidt/ACE-overview.html 
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5.3 Deviations from initial design 
The implementation phase of the TCAPS project has seen a few changes made to some of the TCAPS 
component designs, which will briefly be discussed and justified. 
 
As a result of the decision to change the TCAPS architecture early in the implementation stage, the 
TCAPS signalling protocol module had to be extended to support three new communication types 
between the new networked entities. 
 
The client management packet type was implemented to facilitate communications between the 
manager and flow sifter modules. Managers use this packet type to tell flow sifters the IP address of 
clients they must observe traffic for. 
 
The flow feature packet type was implemented to facilitate communications between flow sifters and 
flow classifiers. Flow sifters use this packet type to send their calculated flow features for each client 
flow to flow classifiers. 
 
The classifier rule management packet was implemented to facilitate communications between flow 
classifiers and managers. Flow classifiers use this packet type to tell managers about detected 
realtime/interactive flows that belong to clients under their control. 
 
Some of the existing signalling protocol packet definitions also had to be slightly modified from their 
initial specification, to account for unforseen implementation issues. This mostly consisted of adding 
fields used to hold the length of other variable length fields within the packet. 
 
Finally, owing to a lack of knowledge about writing networked applications, the original design choice 
to use libpcap/libnet for packet sending/receiving was extremely misguided. These libraries are useful 
for uni directional packet sniffing and sending respectively. They are not overly suitable to being used 
for the sending and receiving of network communications between two applications. As a result of 
this, the TCAPS prototype implementation utilised UDP sockets for application network 
communications. Sockets are the standard way of performing such communications and are much 
simpler to use for these tasks than the libpcap/libnet libraries. 
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6. TCAPS Detailed Technical Discussion 
6.1 Signalling Protocol 
The TCAPS signalling protocol module provides the glue between all of the TCAPS application 
modules. It facilitates all communications within the TCAPS framework via 7 different packet types: 
the rule management packet, classifier rule management packet, acknowledgment packet, transfer 
packet, poll packet, flow feature packet and the client management packet. 
 
The TCAPS signalling protocol module has been implemented as a procedural C library. This design 
choice ensured that if any external parties were to become involved in the commercialisation of 
TCAPS, the protocol code base would most likely be compatible with their development platforms. 
This is particularly pertinent to CPE devices, which tend to run on embedded hardware platforms. 
Such platforms generally have C compilers readily available, but lack other, high-level language 
development platforms. 
 
The protocol has been implemented as a binary protocol. This design choice simplified the structure of 
the protocol itself, and ensured minimal overhead of packet sizes on the wire. Minimal overhead was 
an important consideration for the protocol, as it reduces the negative impact of TCAPS on the 
network. Too much signalling protocol overhead would have reduced the benefits provided by 
TCAPS. 
 
The protocol has been designed for use with both connectionless and connection oriented transport 
mechanisms. By adding an acknowledgment packet type to the protocol, the TCAPS applications can 
handle reliable end to end signalling transport, rather than relying on a connection oriented transport 
mechanism. The TCAPS prototype presented in this report has made exclusive use of UDP over IP as 
the signalling protocol transport mechanism. This design choice further minimised the overhead of 
TCAPS signalling traffic on the network. UDP does not require an established connection between end 
hosts for data transfer, and does not require acknowledgments of each packet, compared to TCP which 
uses both. However, there is nothing stopping the use of the protocol over TCP either. As such, 
network operators and equipment manufacturers have ultimate flexibility in the way they choose to 
utilise the protocol. 
 
The following 7 sub-sections examine each of the individual packet types and their uses in more detail. 
The “Field Type” table column referred to in each of the sub-sections refers to the C programming 
language data type used to hold the value for that field. U8 refers to an unsigned 8 bit type, U16 refers 
to an unsigned 16 bit type, U32 refers to an unsigned 32 bit type, U8 * refers to a string of bytes 
(variable or fixed length) and float refers to a 32 bit floating point number type. 
 
Note that values for fields such as “Packet Type”, “Match Rule” and “Poll Type” were arbitrarily 
defined during implementation. The correct mapping of meaning to value for such fields can always 
be found in the tcaps_sp.h library header file. 
6.1.1 Rule Management Packet Type 
The rule management packet (RMP) type is used to communicate QoS SS related rules in a QoS SS 
independent fashion. It is primarily used between the TCAPS manager and TCAPS client interface, 
but can be used between TCAPS managers during transfer operations. 
 
The serialized structure of a RMP is shown in Figure 12, and the serialized structure of a rule segment 
is shown in Figure 26. 
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Packet Type (1 byte)

TCAPS Identifier (6 bytes)

Priority On Match (1 byte)
Operation Type (1 byte)
Num Retries (1 byte)
Transfer ID (1 byte)

Rule Number (2 bytes)

Timeout (2 bytes)

Rule Segments 1-255

Number Of Rule Segments (1 byte)

 
Figure 12. Rule management packet serialized view 
 

Total Segment Length (4 bytes)

Reference Bit Sequence
((Total Segment Length –11) bytes)

Conjunction (1 byte)
Match Rule (1 byte)

Relative To (1 byte)

Offset (2 bytes)

Number Of Bits To Match (2 bytes)

 
Figure 13. Rule segment serialized view 
 
Table 1 summarises each of the RMP fields. 
 
Field Name Field Length 

(bytes) 
Field 
Type 

Field Description 

Packet Type 1 U8 Identifies the packet as a RMP 
TCAPS 
Identifier 

6 U8 * MAC address of the client device. Used to uniquely 
identify the client to the TCAPS manager. 

Rule Number 2 U16 Uniquely identifies the RMP and associated rule 
Transfer ID 1 U8 Identifies the transfer operation, if any, this RMP is 

being sent as part of 
Num Retries 1 U8 Identifies the number of times this particular RMP has 

been sent 
Operation 
Type 

1 U8 Identifies whether the associated rule is to be created, 
updated or deleted 

Priority On 
Match 

1 U8 Identifies the priority that should be given to traffic 
matching the associated rule. 0 is highest priority, 255 
is lowest priority 
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Field Name Field Length 
(bytes) 

Field 
Type 

Field Description 

Timeout 2 U16 The amount of time (in seconds) after rule instantiation 
that the rule will expire. A timeout of 0 means rule 
never expires 

Number Of 
Rule Segments 

1 U8 Defines how many rule segments make up the 
associated rule. Must be in range [1,255] to be valid 

Table 1. Rule management packet fields 
 
Table 2 summarises each of the rule segment fields. 
 
Field Name Field Length 

(bytes) 
Field 
Type 

Field Description 

Total Segment 
Length 

4 U32 Total length (in bytes) of the segment, inclusive of this 
4 byte field 

Relative To 1 U8 Specifies which well known packet entry point the rule 
segment is relative to e.g. beginning of IP header, 
beginning of TCP header, etc. 

Offset 2 U16 Specifies the offset (in bits) into the packet from the 
“Relative To” packet entry point 

Number Of 
Bits To Match 

1 U8 Specifies the number of bits from “Offset” to match 
with the reference bit sequence 

Match Rule 1 U8 Specifies the type of match to apply between the 
packet bit sequence and reference bit sequence e.g. 
equal to, greater than, etc. 

Conjunction 1 U8 Specifies the relationship between this rule segment 
and the next e.g. “and”, etc. 

Reference Bit 
Sequence 

“Total Segment 
Length” -11 

U8 * The bit sequence to compare the packet’s bit sequence 
to  

Table 2. Rule segment fields 
A RMP is constructed by filling in the appropriate fields in the base packet, and then appending 
between 1 and 255 rule segments to the end of the base packet. Each rule segment contains the 
information required to build a portion of a complete rule. The segments “string” together using the 
conjunction field of each segment, and effectively form a Boolean expression that a packet will either 
match or not match. Packets that match the rule will be given the level of priority indicated in the 
“Priority On Match” field. 
 
For example, let us construct a rule for a client with MAC address 12:34:56:78:9A:BC that gives the 
highest possible priority to all TCP traffic travelling between source 172.16.251.50:5000 and 
destination 136.186.229.95:43519 and expires in 5 minutes. We shall assume this is rule number 1 and 
this rule is not part of a transfer operation. Table 3 shows the 72 byte RMP corresponding to our 
example rule. 
 
 Field Name Field Value (Hex) Field Value (Decimal) 

Packet Type 0x01 1 
TCAPS Identifier 0x123456789ABC 20015998343868 
Rule Number 0x01 1 
Transfer ID 0x00 0 
Num Retries 0x00 0 

Base RMP 

Operation Type 0x01 1 
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Priority On Match 0x00 0 
Timeout 0x12C 300 
Number Of Rule Segments 0x04 4 
Total Segment Length 0x0F 15 
Relative To 0x02 2 
Offset 0x60 96 
Number Of Bits To Match 0x20 32 
Match Rule 0x01 1 
Conjunction 0x01 1 

Rule 
Segment 1 

Reference Bit Sequence 0xAC10FB32 2886794034 
Total Segment Length 0x0D 13 
Relative To 0x03 3 
Offset 0x00 0 
Number Of Bits To Match 0x10 16 
Match Rule 0x01 1 
Conjunction 0x01 1 

Rule 
Segment 2 

Reference Bit Sequence 0x1388 5000 
Total Segment Length 0x0F 15 
Relative To 0x02 2 
Offset 0x80 128 
Number Of Bits To Match 0x20 32 
Match Rule 0x01 1 
Conjunction 0x01 1 

Rule 
Segment 3 

Reference Bit Sequence 0x88BAE55F 2293949791 
Total Segment Length 0x0D 13 
Relative To 0x03 3 
Offset 0x10 16 
Number Of Bits To Match 0x10 16 
Match Rule 0x01 1 
Conjunction 0x01 1 

Rule 
Segment 4 

Reference Bit Sequence 0xA9FF 43519 
Table 3. Example rule management packet 
We shall briefly discuss the meaning of some of the less obvious field values in rule segment 1 and 
relate them back to our original example rule. Rule segment 1 is matching the source IP address of our 
rule. “Relative To” having a value of 2 refers to the start of a packet’s IP header. To reach the source 
IP address relative to the start of the IP header, we have to move 96 bits into the header - hence the 
“Offset” of 96. Once at the beginning of the source IP field of the IP header, we need to match the next 
32 bits to match an IP address. A “Match Rule” of 1 is defined as being “equal to” i.e. we want the full 
32 bits of a packet’s IP header source IP field to match all 32 bits of our “Reference Bit Sequence”. A 
“Conjunction” of 1 is defined to be “and” i.e. in order for a packet to match our rule as a whole, it 
must match both this rule segment and the next rule segment. Finally, the “Reference Bit Sequence of 
0xAC10FB32 is the binary equivalent of 172.16.251.50. 
 
After analysing the remaining 3 rule segments in a similar fashion, we can show that the 4 rule 
segments combine to say “a packet will match this rule if its source IP address is 172.16.251.50 and its 
source port is 5000 and its destination IP address is 136.186.229.95 and its destination port is 43519”. 
Represented in PF firewall parlance, this rule can be represented as “pass out on <interface_name> 
inet proto tcp 172.16.251.50 port 5000 to 136.186.229.95 port 43519”. 
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One additional note on the ordering of rule segments: the current TCAPS client interface (which is the 
only module that translates RMPs into QoS SS specific rules) correctly constructs QoS SS specific 
rules from a RMP with any ordering of rule segments. 
6.1.2 Classifier Rule Management Packet 
The classifier rule management packet (CRMP) type is used to communicate QoS SS related rules for 
a particular client in a QoS SS independent fashion. It is sent from the TCAPS flow classifier to the 
TCAPS manager. 
 
The serialized structure of a CRMP is shown in Figure 14. 
 

Packet Type (1 byte)
Client IP Version (1 byte)

Encapsulated RMP

Start of 
packet

Client IP Address
(4 or 16 bytes)

 
Figure 14. Classifier rule management packet serialized view 
 
Table 4 summarises each of the CRMP fields. 
 
Field Name Field Length 

(bytes) 
Field 
Type 

Field Description 

Packet Type 1 U8 Identifies the packet as a CRMP 
Client IP 
Version 

1 U8 Specifies the IP version of the “Client IP Address” 
field. A value of 1 corresponds to IPv4 and 2 
corresponds to IPv6 

Client IP 
Address 

4 or 16 U8 * Specifies the IP address of the client the encapsulated 
RMP is to be sent to. 4 bytes if “Client IP Version” is 
1, 16 bytes if “Client IP Version” is 2 

Encapsulated 
RMP 

1 U8 * A partially filled in RMP, with the “Packet Type”, 
“Priority On Match”, “Operation Type”, “Number Of 
Rule Segments” fields correctly filled in and the 
correct rule segments attached 

Table 4. Classifier rule management packet fields 
 
A CRMP is sent when a TCAPS flow classifier has identified a client traffic flow that requires a 
change in its current priority level. The CRMP type is effectively a RMP with an additional header, 
which identifies the particular client, by IP address, that the RMP is to be sent to. The TCAPS 
manager is the only module that deals directly with clients. Therefore, a TCAPS flow classifier must 
notify the TCAPS manager responsible for a particular client when a client rule needs to change, and 
the CRMP is specifically used for this purpose.  
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CRMPs will be sent from a TCAPS flow classifier to TCAPS manager if: 
• A currently non prioritised flow (priority = 255) is assigned a priority less than 255 
• A currently prioritised flow (priority < 255) is assigned a priority of 255 
• A currently prioritised flow (priority < 255) is assigned a different priority less than 255 
 
For a given client and a given flow, a change in the priority assigned to the client’s flow at the TCAPS 
flow classifier will only result in 2 changes to the encapsulated RMP. 
 
If a currently non prioritised flow (priority = 255) is assigned a priority less than 255, the RMP 
“Priority On Match” field will be set to the assigned priority, and the “Operation Type” field will be 
set to 1 to indicate the client should create the rule specified by this RMP. 
 
If a currently prioritised flow (priority < 255) is assigned a priority of 255, the RMP “Priority On 
Match” field will be set to 255, and the “Operation Type” field will be set to 2 to indicate the client 
should delete the rule specified by this RMP. 
 
If a currently prioritised flow (priority < 255) is assigned a different priority less than 255, the RMP 
“Priority On Match” field will be set to the assigned priority, and the “Operation Type” field will be 
set to 3 to indicate the client should update the rule specified by this RMP. 
6.1.3 Acknowledgment Packet Type 
The acknowledgment packet (AP) type is used to acknowledge the receipt of other signalling protocol 
packet types. All TCAPS modules can use the AP type. 
 
The serialized structure of an AP is shown in Figure 15. 
 
Start of 
packet

 
Figure 15. Acknowledgment packet serialized view 
 
Table 5 summarises each of the AP fields. 
 
Field Name Field Length 

(bytes) 
Field 
Type 

Field Description 

Packet Type 1 U8 Identifies the packet as an AP 
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Field Name Field Length 
(bytes) 

Field 
Type 

Field Description 

TCAPS 
Identifier 

6 U8 MAC address of the sending device. Used to uniquely 
identify the source device to the recipient device 

Acknowledgm
ent Type 

1 U8 Identifies the packet type being acknowledged 

Error Code 2 U16 If the acknowledged packet caused an error, this field 
will specify a numeric code representing the error 

Rule Number 2 U16 If the acknowledged packet is a RMP, this field will 
specify rule number of the RMP 

Transfer ID 1 U8 If the acknowledged packet is part of a transfer 
operation, this field will specify transfer id of the 
transfer operation 

Table 5. Acknowledgment packet fields 

6.1.4 Transfer Packet Type 
The transfer packet (TP) type is used to allow transfers of existing state between devices. It is 
primarily used between the TCAPS manager and TCAPS client interface, but can be used between 
TCAPS managers as part of a client transfer operation. 
 
The different serialized structures of a TP are shown in Figure 16 and Figure 17. 
 

Packet Type (1 byte)

TCAPS Identifier (6 bytes)

Transfer Type (1 byte)
Transfer ID (1 byte)

Number Of Rules (2 bytes)
Start of 
packet

 
Figure 16. Transfer packet serialized view, “Transfer Type” is of type “Rule” 
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Packet Type (1 byte)

TCAPS Identifier (6 bytes)

Transfer Type (1 byte)
Transfer ID (1 byte)

Start of 
packet

TCAPS Manager Port (2 bytes)

TCAPS Manager IP Address
(4 or 16 bytes)

TCAPS Manager IP Version (1 byte)  
Figure 17. Transfer packet serialized view, “Transfer Type” is of type “Server” 
Table 6 summarises each of the TP fields. 
 
Field Name Field Length 

(bytes) 
Field 
Type 

Field Description 

Packet Type 1 U8 Identifies the packet as a TP 
TCAPS 
Identifier 

6 U8 MAC address of the sending device. Used to uniquely 
identify the source device to the recipient device 

Transfer Type 1 U8 Identifies the requested transfer operation 
Transfer ID 1 U8 A unique number (over the lifetime of the transfer 

operation) identifying the transfer operation 
Number Of 
Rules 

2 U16 If the “Transfer Type” is of type “Rule”, this field will 
be present and will indicate the number of rules being 
transferred 

TCAPS 
Manager Port 

2 U16 If the “Transfer Type” field is of type “Server”, this 
field will be present and specifies the UDP/TCP port 
number used by the TCAPS manager being transferred 
to 

TCAPS 
Manager IP 
Version 

1 U8 If the “Transfer Type” field is of type “Server”, this 
field will be present and specifies the IP version of the 
“TCAPS Manager IP Address” field. A value of 1 
corresponds to IPv4 and 2 corresponds to IPv6 

TCAPS 
Manager IP 
Address 

4 or 16 U8 * If the “Transfer Type” field is of type “Server”, this 
field will be present and specifies the IP address of the 
TCAPS manager being transferred to. 4 bytes if 
“TCAPS Manager IP Version” is 1, 16 bytes if 
“TCAPS Manager IP Version” is 2 

Table 6. Transfer packet fields 

6.1.5 Poll Packet Type 
The poll packet (PP) type is used as a keep alive signal, as well as to perform client 
registration/deregistration. It is currently only used between the TCAPS manager and TCAPS client. 
 
The serialized structure of a PP is shown in Figure 18, and the serialized structure of an information 
segment is shown in Figure 19. 
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Start of 
packet

 
Figure 18. Poll packet serialized view 

Total Segment Length (4 bytes)

Value
((Total Segment Length –(Key 

Length + 1)) bytes)

Key Length (1 byte)

Key (Key Length bytes)

Start of 
segment

 
Figure 19. Information segment serialized view 
 
Table 7 summarises each of the PP fields. 
 
Field Name Field Length 

(bytes) 
Field 
Type 

Field Description 

Packet Type 1 U8 Identifies the packet as an PP 
TCAPS 
Identifier 

6 U8 MAC address of the sending device. Used to uniquely 
identify the source device to the recipient device 

Poll Type 1 U8 Identifies the purpose of the PP 
Number Of 
Info Segments 

1 U8 Defines how many information segments have been 
appended to the base PP. Entire range [0,255] is valid 

Table 7. Poll packet fields 
Table 9 summarises each of the information segment fields. 
 
Field Name Field Length 

(bytes) 
Field 
Type 

Field Description 

Total Segment 
Length 

4 U32 Total length (in bytes) of the segment, inclusive of this 
4 byte field 

Key Length 1 U8 Specifies the length (in bytes) of the “Key” field 
Key “Key Length” U8 * Contains the key for this information segment 
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Field Name Field Length 
(bytes) 

Field 
Type 

Field Description 

Value “Total Segment 
Length” – 
(“Key Length” 
+ 1) 

U8 * Contains the value associated with the “Key” for this 
information segment 

Table 8. Information segment fields 
 
A PP is constructed by filling in the appropriate fields in the base packet, and then appending between 
0 and 255 rule segments to the end of the base packet. In its simplest form, a PP will have no appended 
information segments, and can be used as a keep alive, or for registration/deregistration of a TCAPS 
client interface with a TCAPS manager. 
 
Information segments can contain any data, but were primarily implemented to allow devices to 
communicate their capabilities with each other. They are structured in a key-value pair arrangement, 
with a maximum key length of 255 bytes and unrestricted value length. The information segment’s 
specification allows it to be used with ASCII text and/or binary keys/values. Limiting the “Key 
Length” field to 1 byte allows the “Key” field to be populated with up to 255 ASCII characters, or 
2255*8 different binary combinations. This limitation should still provide more than enough different 
key combinations to allow communication of a full set of device characteristics. 
6.1.6 Flow Feature Packet 
The flow feature packet (FFP) type is used to communicate client specific flow features. It is sent from 
the TCAPS flow sifter to the TCAPS flow classifier. 
 
The different serialized structures of a FFP are shown in Figure 20 and Figure 21, and the serialized 
structure of a flow feature segment is shown in Figure 22. 
 

Packet Type (1 byte)

TM IP Version (1 byte)

Flow Feature Segments 1-255

TM IP Address
(4 or 16 bytes)

Number Of Flow Feature Segments 
(2 bytes)

Flow ID Type (1 byte)
W
hich Is Client IP (1 byte)

Client IP Version (1 byte)

Flow Source IP Address
(4 or 16 bytes)

Flow Destination IP Address
(4 or 16 bytes)

 
Figure 20. Flow feature packet serialized view, “Flow ID Type” is IPIP 
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Packet Type (1 byte)

TM IP Version (1 byte)

Flow Feature Segments 1-255

TM IP Address
(4 or 16 bytes)

Number Of Flow Feature Segments 
(2 bytes)

Flow ID Type (1 byte)
W
hich Is Client IP (1 byte)

Client IP Version (1 byte)

Flow Source IP Address
(4 or 16 bytes)

Flow Destination IP Address
(4 or 16 bytes)

Flow Source Port/SPI
(2 or 4 bytes)

Flow Destination Port/SPI
(2 or 4 bytes)

 
Figure 21. Flow feature packet serialized view, “Flow ID Type” is IPIPPORT or IPIPSPI 
 

Key (2 bytes)

Value (4 bytes)

 
Figure 22. Flow feature segment serialized view 
 
Table 9 summarises each of the FFP fields. 
 
Field Name Field Length 

(bytes) 
Field 
Type 

Field Description 

Packet Type 1 U8 Identifies the packet as an FFP 
Number Of 
Flow Feature 
Segments 

2 U16 Defines how many flow feature segments have been 
appended to the base FFP. Must be in range [1,255] to 
be valid 

TM IP Version 1 U8 Specifies the IP version of the “TM IP Address” field. 
A value of 1 corresponds to IPv4 and 2 corresponds to 
IPv6 

TM IP Address 4 or 16 U8 * Specifies the IP address of the TCAPS manager 
managing the client this flow belongs to. 4 bytes if 
“TM IP Version” is 1, 16 bytes if “TM IP Version” is 2 

Flow ID Type 1 U8 Specifies the type of flow this FFP is being sent for. A 
value of 1 corresponds to IPIP, 2 corresponds to 
IPIPPORT and 3 corresponds to IPIPSPI 
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Field Name Field Length 
(bytes) 

Field 
Type 

Field Description 

Which Is 
Client IP 

1 U8 Specifies whether the flow source or destination IP 
address belongs to the TCAPS client being monitored. 
A value of 1 indicates the flow source IP address 
belongs to the monitored client. A value of 2 indicates 
the flow destination IP address belongs to the 
monitored client 

Client IP 
Version 

1 U8 Specifies the IP version of the “Flow Source IP 
Address” and “Flow Destination IP Address” fields. A 
value of 1 corresponds to IPv4 and 2 corresponds to 
IPv6 

Flow Source IP 
Address 

4 or 16 U8 * Specifies the source IP address of the flow this FFP is 
being sent for. 4 bytes if “Client IP Version” is 1, 16 
bytes if “Client IP Version” is 2 

Flow 
Destination IP 
Address 

4 or 16 U8 * Specifies the destination IP address of the flow this 
FFP is being sent for. 4 bytes if “Client IP Version” is 
1, 16 bytes if “Client IP Version” is 2 

Flow Source 
Port/SPI 

2 or 4 U16 or 
U32 

If the “Flow ID Type” field is of type “IPIPPORT” or 
“IPIPSPI”, this field will be present and specifies the 
source port/SPI of the flow this FFP is being sent for. 2 
bytes if “Flow ID Type” is 2, 4 bytes if “Flow ID 
Type” is 3 

Flow 
Destination 
Port/SPI 

2 or 4 U16 or 
U32 

If the “Flow ID Type” field is of type “IPIPPORT” or 
“IPIPSPI”, this field will be present and specifies the 
destination port/SPI of the flow this FFP is being sent 
for. 2 bytes if “Flow ID Type” is 2, 4 bytes if “Flow ID 
Type” is 3 

Table 9. Flow feature packet fields 
Table 10 summarises each of the flow feature segment fields. 
 
Field Name Field Length 

(bytes) 
Field 
Type 

Field Description 

Key 2 U16 Contains the binary key for this flow feature segment 
Value 4 float Contains the value associated with the “Key” for this 

flow feature segment 
Table 10. Flow feature segment fields 
 
A FFP is constructed by filling in the appropriate fields in the base packet, and then appending 
between 1 and 255 flow feature segments to the end of the base packet. 
 
Flow feature segments are structured in a key-value pair arrangement, with a key length of 2 bytes and 
value length of 4 bytes. They were designed to be used with a binary key, corresponding to the 
particular flow feature the value field had been calculated for. Using a floating point field type for the 
flow feature segment value allowed both integer and floating point flow features to be transmitted 
using this packet type. Discussions with researchers experimenting with classification algorithms 
revealed that most algorithms use fewer than 100 flow features2. Therefore, limiting the key to allow 
for 65536 different features provides ample room for definition of different flow features that might be 
used by different algorithms. 
                                                 
2 Informal discussion with Mr. Sebastian Zander of the Centre for Advanced Internet Architectures, Swinburne University 
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6.1.7 Client Management Packet Type 
The client management packet (CMP) type is used to communicate client IP addresses that are to be 
monitored. It is sent from the TCAPS manager to the TCAPS flow sifter. 
 
The different serialized structures of a CMP are shown in Figure 23, Figure 24 and Figure 25.  
 

Packet Type (1 byte)
Operation Type (1 byte)

Start of 
packet

FC IP Present (1 byte)

Client IP Version (1 byte)

Client IP Address
(4 or 16 bytes)

TM IP Present (1 byte)

 
Figure 23. Client management packet serialized view, “FC IP Present” is 0 and “TM IP Present” is 0 
 

Packet Type (1 byte)
Operation Type (1 byte)

Start of 
packet

FC IP Present (1 byte)

Client IP Version (1 byte)

Client IP Address
(4 or 16 bytes)

TM IP Present (1 byte)

{TM | FC} IP Version (1 byte)

{TM | FC} IP Address
(4 or 16 bytes)

 
Figure 24. Client management packet serialized view, “FC IP Present” is 1 or “TM IP Present” is 1 
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Packet Type (1 byte)
Operation Type (1 byte)
FC IP Present (1 byte)

Client IP Version (1 byte)

Client IP Address
(4 or 16 bytes)

TM IP Present (1 byte)

FC IP Version (1 byte)

FC IP Address
(4 or 16 bytes)

TM IP Version (1 byte)

TM IP Address
(4 or 16 bytes)

 
Figure 25. Client management packet serialized view, “FC IP Present” is 1 and “TM IP Present” is 1 
 
Table 11 summarises each of the CMP fields. 
 
Field Name Field Length 

(bytes) 
Field 
Type 

Field Description 

Packet Type 1 U8 Identifies the packet as a CMP 
Operation 
Type 

1 U8 Identifies whether the associated client IP is to be 
added or removed from the current list of monitored 
clients 

FC IP Present 1 U8 Specifies whether this CMP contains the IP address of 
the TCAPS flow classifier that should be made 
responsible for classifying this client’s flows. A value 
of 0 corresponds to FALSE and 1 corresponds to 
TRUE 

TM IP Present 1 U8 Specifies whether this CMP contains the IP address of 
the TCAPS manager that is managing the client. A 
value of 0 corresponds to FALSE and 1 corresponds to 
TRUE 

Client IP 
Version 

1 U8 Specifies the IP version of the “Client IP Address” 
field. A value of 1 corresponds to IPv4 and 2 
corresponds to IPv6 

Client IP 
Address 

4 or 16 U8 * Specifies the IP address of the client. 4 bytes if “Client 
IP Version” is 1, 16 bytes if “Client IP Version” is 2 

FC IP Version 1 U8 If the “FC IP Present” field is of type “TRUE”, this 
field will be present and specifies the IP version of the 
“FC IP Address” field. A value of 1 corresponds to 
IPv4 and 2 corresponds to IPv6 

FC IP Address 4 or 16 U8 * If the “FC IP Present” field is of type “TRUE”, this 
field will be present and specifies the IP address of the 
TCAPS flow classifier that should be made responsible 
for classifying this client’s flows. 4 bytes if “FC IP 
Version” is 1, 16 bytes if “FC IP Version” is 2 

TM IP Version 1 U8 If the “TM IP Present” field is of type “TRUE”, this 
field will be present and specifies the IP version of the 
“TM IP Address” field. A value of 1 corresponds to 
IPv4 and 2 corresponds to IPv6 
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Field Name Field Length 
(bytes) 

Field 
Type 

Field Description 

TM IP Address 4 or 16 U8 * If the “TM IP Present” field is of type “TRUE”, this 
field will be present and specifies the IP address of the 
TCAPS manager that is managing the client. 4 bytes if 
“TM IP Version” is 1, 16 bytes if “TM IP Version” is 2 

Table 11. Client management packet fields 
 
The 3 different CMP structures relate to the value of the fields “FC IP Present” and “TM IP Present”. 
When a TCAPS manager uses a CMP to signal a TCAPS flow sifter to monitor a particular client IP 
address, it has a couple of choices. It can specify the IP address of the TCAPS flow classifier that 
should be made responsible for classifying flows belonging to the specified client. It can also specify 
the IP address of the TCAPS manager that is responsible for managing the specified client. 
Alternatively, it can choose not to specify a TCAPS flow classifier IP address or TCAPS manager IP 
address, which will let the recipient TCAPS flow sifter decide on appropriate addresses. 
 
Having this flexibility allows a TCAPS manager to tightly control the TCAPS nodes responsible for 
sifting and classifying specific client flows, if it so desires. Having the ability to specify the TCAPS 
manager responsible for the client is also advantageous. During the course of normal operation, the 
TCAPS manager sending the CMP to a TCAPS flow sifter would be responsible for managing the 
client. However, if a client were to switch TCAPS managers, having the ability to explicitly signal the 
TCAPS flow sifter and give it a new TCAPS manager IP address may be useful. 

6.2 Client Interface 
The TCAPS client interface (CI) module is responsible for managing all client side TCAPS related 
functionality. It communicates with the TCAPS manager using the TCAPS signalling protocol. It is 
also responsible for communicating with and managing the QoS SS to ensure traffic requiring 
prioritisation receives it. 
 
The TCAPS client interface module has been developed as an object oriented C++ application, making 
extensive use of the ACE library. This design choice simplified the prototype development process for 
the module, at the expense of making it less useful to external CPE manufacturers. CPE devices, 
which tend to run on embedded hardware platforms, generally have C compilers readily available, but 
lack other, high-level language development platforms. However, one could speculate that a CPE 
manufacturer would want to write their own implementation of the CI anyway, on account of wanting 
to customise it slightly to their particular development environment and hardware platform. With this 
in mind, the TCAPS prototype CI was written to be somewhat of a reference implementation. 
Developing the CI in this fashion seemed to be a valid compromise between prototype development 
simplicity and readiness for use by industry. 
 
The prototype CI demonstrates the core features required by a CI implementation, as well hinting at 
some additional functionality that could be implemented. A CPE manufacturer could take this 
implementation, study how it works, and then implement their own from scratch. Alternatively, if they 
had a C++ development environment for their platform, they could take the reference implementation 
and extend it as required. 
 
The code structure of the CI is very simple. Figure 26 shows the UML class diagram for the CI. Note 
that while “Main” is not actually a C++ class within the CI code (“Main” refers to the main() function 
of the program), it has been included in the diagram for clarity.  
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Figure 26. TCAPS client interface UML class diagram 
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Figure 27 shows a logical representation of the CI threads of execution, and the interaction between 
these threads and external entities. Arrow heads point in the direction of communication. 

Main Thread

TCAPS Manager 
Comms Thread

TCAPS QoS SS 
Translator Library

TCAPS Rule 
Management Thread

Comms 
network 
interface

QoS Subsystem libACE

TCAPS Signalling 
Protocol Library

 
Figure 27. TCAPS client interface execution and interaction diagram 
The basic operation of the CI can be summarised as follows: 
• Program begins executing in the “Main Thread”. 
• The “TCAPS Rule Management Thread” and “TCAPS Manager Comms Thread” are created from 

the “TCAPS_Rule_Management_Task” and “TCAPS_Network_Task” classes respectively. 
• The “TCAPS Manager Comms Thread” is responsible for managing the transmission and receipt 

of all signalling protocol packets from all TCAPS managers the client communicates with. 
• The “TCAPS Rule Management Thread” is responsible for managing the list of rules assigned to 

this client, and liaising with the QoS SS via the “TCAPS QoS SS Translator Library”. In order to 
add/remove a rule to/from the QoS SS, the “TCAPS Rule Management Thread” uses the “TCAPS 
QoS SS Translator Library” tcaps_translate_rmp2qosss() function to translate the RMP into a QOS 
SS specific rule. If it is adding the rule, it then calls tcaps_qosss_add_rule() with the translated 
command. If it is deleting the rule, it then calls tcaps_qosss_delete_rule() with the translated 
command. 

• The “TCAPS Manager Comms Thread” binds to a randomly allocated UDP port number above 
1024. 

• The “Main Thread” initialises the QoS SS via the QoS SS translator library. 
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• The “Main Thread” constructs a signalling protocol poll packet using the “TCAPS Signalling 
Protocol Library” to register with the TCAPS manager. The IP address of the TCAPS manager is 
currently hard coded into the module, but will eventually be moved into a runtime configuration 
file. 

• The “Main Thread” passes the poll packet to the “TCAPS Manager Comms Thread”, which then 
sends the packet to the TCAPS manager. 

• At this stage, the CI is registered with the manager, and waits for signalling information from the 
manager. 

• Rule management related signalling information is handed from “TCAPS Manager Comms 
Thread” to “Main Thread” to “TCAPS_Rule_Management_Task” for processing. Other signalling 
information is handled by the “Main Thread”. 

• The “Main Thread” periodically constructs and sends a poll packet to the TCAPS manager as a 
keep alive mechanism. The time between updates is currently hard coded into the module, but will 
eventually be moved into a runtime configuration file. 

• On shutdown, the “Main Thread” constructs and sends a poll packet to unregister with the TCAPS 
manager. It also removes all TCAPS related rules from the QoS SS and shuts the QoS SS down. 

 
The method for disseminating the TCAPS manager IP address to the CI is the most important issue 
remaining to be solved for the CI. The solution currently thought to be the most suitable involves 
using DHCP. Most ISPs uses DHCP to dynamically assign IP addresses to their clients when their 
CPE comes online. Even ISPs that offer static IP addresses to clients use DHCP as the means to notify 
the CPE of its static IP. 
 
The DHCP options required by a client are requested in a DHCP request packet. DHCP offer packets 
are sent in reply to DHCP request packets received from clients. Offer packets contain key-value pair 
options for things like the IP address assigned to the client, the default gateway, subnet mask, DNS 
server etc.. We could add an additional option to the DHCP request packet, that requested the “tcaps-
manager” option from the server. If the ISP was TCAPS enabled, the ISP’s DHCP server would be 
configured to respond to the “tcaps-server” option by providing a list of IP addresses of active TCAPS 
managers at the ISP. These IP addresses would then be used to form a list of available TCAPS 
managers in the TCAPS CI, which would solve the aforementioned problem and give the CI the ability 
to switch managers if the one currently registered with were to go down. 
 
It is worth noting that if a device does not request an option in its DHCP request packet, the DHCP 
offer will not contain a key-value pair for that option.  This fact ensures that TCAPS unaware CPE 
will not receive DHCP offer packets with TCAPS related options, as they would not be requesting the 
new TCAPS options in their DHCP request packets. This would allow TCAPS aware and TCAPS 
unaware CPE to coexist within the same ISP simultaneously, which satisfies the TCAPS design goals. 
 
There are plenty of other options that could be considered as well. For example, TCAPS aware CPE 
could be programmed to treat the default gateway as a TCAPS manager and direct all signalling 
communication to it. The device functioning as the ISP’s default gateway could then perhaps act as a 
proxy to the real TCAPS managers and forward packets on to the correct machines. 
 
At this stage, a trial of the DHCP solution is on top of the TCAPS “to do” list. Other solutions to this 
problem will be sought should this option prove to be unfeasible. 
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6.3 QoS Subsystem Translator 
The TCAPS QoS subsystem (QoS SS) translator module provides the interface between the client 
interface and underlying QoS SS. It allows the client interface to programmatically initialise, 
shutdown and manage the QoS SS in a QoS SS independent manner. It is also responsible for 
translating RMPs into QoS SS specific rules. 
 
The TCAPS QoS SS translator module has been implemented as a procedural C library. This design 
choice ensured that if any external parties were to become involved in the commercialisation of 
TCAPS, the translator code base would most likely be compatible with their development platforms. 
This is particularly pertinent to CPE devices, which tend to run on embedded hardware platforms. 
Such platforms generally have C compilers readily available, but lack other, high-level language 
development platforms. 
 
The library has been designed to allow a single client interface implementation to be used with 
multiple QoS SSs. This has been achieved by providing an abstraction layer between generic library 
function calls and the QoS SS specific function calls. Figure 28 attempts to illustrate these concepts in 
action, by showing how the most common generic function calls are mapped to QoS SS specific 
function calls depending on the C pre-processor “#ifdef” commands embedded in the library code. 
 

TCAPS QoS SS 
Translator Library

 
Figure 28. QoS subsystem translator library logical structure and function call diagram 
The generic function calls tcaps_qosss_init(), tcaps_translate_rmp2qosss(), tcaps_qosss_add_rule(), 
tcaps_qosss_delete_rule() and tcaps_qosss_shutdown() are called by code within the TCAPS client 
interface module. These function calls then call the corresponding QoS SS specific function call to 
perform the required function. In this way, the TCAPS client interface is not calling any QoS SS 
specific code directly. This allows us to change the underlying QoS SS without requiring any changes 
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to the TCAPS client interface code at all. This feature would be extremely useful for CPE 
manufacturers that perhaps had a couple of different CPE models running different QoS SSs. They 
could write one implementation of the TCAPS client interface to run on all of their equipment models, 
and only write QoS SS specific changes into the QoS SS translator library. This reduces development 
time and allows for clean separation between platform specific and platform unspecific differences. 
 
The PF/ALTQ specific function calls have been fully implemented as part of the current TCAPS 
prototype. The TC [16] specific function calls have not been implemented, but the function stubs have 
been included in the library for the purposes of understanding how the library can be extended to 
support new QoS SSs. 
 
The library is designed in such a way that only one QoS SS can be used at any one time. I am unable 
to think of a situation where using multiple QoS SSs simultaneously would be beneficial, and 
therefore feel trying to cater for this rare situation would unnecessarily complicate the code. 
Compiling the library therefore requires the user to define the particular QoS SS to build the library 
for. By having to do this at compile time, the C pre-processor directives inside the library code modify 
the library’s behaviour to map the generic function calls to the specific function calls for the specified 
QoS SS. This compilation process has an added bonus that the compiled size of the library is only as 
large as the compiled size of the generic function calls and particular QoS SS specific function calls. 
Function calls for other QoS SSs in the library code base are not included in the compiled library, 
which reduces overall library size. This is not a huge advantage, but is probably useful in embedded 
device environments where this library will primarily be used, and where code size can be an 
important issue. 
 
The process for extending the QoS SS translator library to support a new QoS SS is reasonably straight 
forward. Two new files need to be added to the library source code base. These files should be named 
“tcaps_<QoS SS name>_translator.c” and “tcaps_<QoS SS name>_translator.h”, replacing <QoS SS 
name> with the name of the QoS SS. 
 
The “tcaps_<QoS SS name>_translator.h” file should, at a minimum, provide a function prototype for 
all functions available in the “tcaps_qosss_translator.h” file, but replacing “qosss” in their name with 
“<QoS SS name>”. 
 
After this has been done, the following lines need to be added to the “tcaps_qosss_translator.h” file: 
 
#ifdef TCAPS_QOSSS_<QoS SS name> 
 #include "tcaps_<QoS SS name>_translator.h" 
#endif 
 

This step ensures the newly defined QoS SS function prototypes are included in the 
“tcaps_qosss_translator.h” generic header file. 
 
All that remains to be done at this stage is add “#ifdef TCAPS_QOSSS_<QoS SS name> … #endif” 
code fragments to the generic functions in “tcaps_qosss_translator.c” in order to ensure the mapping of 
generic function calls to the new QoS SS function calls occurs. The developer can then implement the 
required QoS SS specific functions within the “tcaps_<QoS SS name>_translator.c” file to perform the 
required functionality. 
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6.4 Flow Sifter 
The TCAPS flow sifter (FS) module is responsible for inspecting TCAPS client traffic, sifting the 
traffic into flows, calculating statistical features for each flow and sending these features to a TCAPS 
flow classifier for classification. It communicates with the TCAPS manager and TCAPS flow 
classifier using the TCAPS signalling protocol. 
 
The TCAPS flow sifter module has been developed as an object oriented C++ application, making 
extensive use of the ACE library. This design choice simplified the prototype development process for 
the module and provides a sound foundation for future development. Unlike the CI, the FS does not 
particularly need to run on an embedded platform with limited resources and a cut down operating 
system. Therefore, the choice to use threading and sockets through the ACE library is justified and not 
likely to cause any problems in the future. The previously discussed benefits of using the ACE library 
also lend credence to this design choice. 
 
Figure 29 shows the UML class diagram for the FS. Note that while “Main” is not actually a C++ class 
within the FS code (“Main” refers to the main() function of the program), it has been included in the 
diagram for clarity. 
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Figure 29. TCAPS flow sifter UML class diagram 
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Figure 30 shows a logical representation of the FS threads of execution, and the interaction between 
these threads and external entities. Arrow heads point in the direction of communication. 
 

 
Figure 30. TCAPS flow sifter execution and interaction diagram 
The basic operation of the FS can be summarised as follows: 
• Program begins executing in the “Main Thread”. 
• The “Main Thread” initialises the libpcap live sniffing session. 
• The “TCAPS Flow Manager Thread”, “TCAPS Sniff Thread”, “TCAPS Manager Comms Thread” 

and “TCAPS Flow Classifier Comms Thread” are created from the 
“TCAPS_Flow_Manager_Task”, “TCAPS_Sniff_Task”, “TCAPS_Network_Task” and 
“TCAPS_Network_Task” classes respectively. 

• The “TCAPS Manager Comms Thread” is responsible for managing the transmission and receipt 
of all signalling protocol packets to/from all TCAPS managers the FS communicates with. 

• The “TCAPS Flow Classifier Comms Thread” is responsible for managing the transmission and 
receipt of all signalling protocol packets to/from all TCAPS flow classifiers the FS communicates 
with. 

• The “TCAPS Sniff Thread” is responsible for sniffing packets from libpcap and passing them to 
the “TCAPS Flow Manager Thread”. 

• The “TCAPS Flow Manager Thread” is responsible for identifying packets that belong to valid 
TCAPS clients, sorting those packets into individual flows and calculating statistical features for 
each flow as packets are added. 
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• The “TCAPS Manager Comms Thread” binds to an arbitrarily defined UDP port number, currently 
4567. The UDP port number is currently hard coded into the module, but will eventually be moved 
into a runtime configuration file. 

• The “TCAPS Flow Classifier Comms Thread” binds to a randomly allocated UDP port number 
above 1024. 

• For each new client management packet (CMP) received via the “TCAPS Manager Comms 
Thread”, the “Main Thread” will add an entry to the “TCAPS_Client_List” list in the “TCAPS 
Flow Manager Thread”. Each client monitored by the FS is assigned to a TCAPS flow classifier 
that will receive all flow feature packets relating to the client’s flows. 

• The “Main Thread” periodically constructs flow feature packets for each client flow that has 
changed since the last time this operation was performed. The flow feature packets are sent to the 
TCAPS flow classifier that the client was assigned to. The time between updates is currently hard 
coded into the module, but will eventually be moved into a runtime configuration file. 

• If an existing client flow does not transmit any traffic within a given threshold time, the client flow 
will be removed by the FS and all associated resources released. The threshold time is currently 
hard coded into the module, but will eventually be moved into a runtime configuration file. 

• On shutdown, the “TCAPS Sniff Thread” shuts the libpcap session down and “Main Thread” frees 
all system resources. 

 
One of the more interesting aspects of the FS module worth discussing is the way it calculates features 
for each client flow currently being monitored. Two broad classes of flow feature have been defined 
within the FS: “since beginning” and “sliding window”. Flow features in the “since beginning” class 
are calculated based on every packet that has been observed since the flow began. They are updated 
each time a new packet arrives for the flow. This appears to be the more traditional way of calculating 
features, based on discussions with machine learning algorithm researchers3. Flow features in the 
“sliding window” class are calculated based on the last X packets observed for the flow, where X is 
user configurable. They are updated at periodic intervals rather than each time a packet is observed, 
and provide more finely grained statistics for a flow. 
 
Features calculated based on a “sliding window” premise may provide better flow classification 
criteria than “since beginning” features. For example, if an application were to have periods where its 
communications change from being non-realtime to realtime, “since beginning” flow features would 
probably miss the change in traffic characteristics. However, “sliding window” features would most 
likely pick up the change, assuming the number of packets in the window is not too large. Therefore, 
the view was taken that it would perhaps be beneficial to make the effort to implement the “sliding 
window” features, in the hope that some experimentation may be performed at a later date to examine 
their characteristics and usefulness in flow classification.  

6.5 Flow Classifier 
The TCAPS flow classifier (FC) module is responsible for classifying realtime/interactive client flows 
and notifying the TCAPS manager responsible for the client about the identified realtime/interactive 
flows so that the client can be instructed to prioritise the flow. The flow classifier module 
communicates with the TCAPS flow sifter and TCAPS manager using the TCAPS signalling protocol.  
 
The TCAPS flow classifier module has been developed as an object oriented C++ application, making 
extensive use of the ACE library. This design choice simplified the prototype development process for 
                                                 
3 Informal discussion with Mr. Sebastian Zander of the Centre for Advanced Internet Architectures, Swinburne University 
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the module and provides a sound foundation for future development. Unlike the CI, the FC does not 
particularly need to run on an embedded platform with limited resources and a cut down operating 
system. Therefore, the choice to use threading and sockets through the ACE library is justified and not 
likely to cause any problems in the future. The previously discussed benefits of using the ACE library 
also lend credence to this design choice. 
 
Figure 31 shows the UML class diagram for the FC. Note that while “Main” is not actually a C++ 
class within the FC code (“Main” refers to the main() function of the program), it has been included in 
the diagram for clarity. 
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Figure 31. TCAPS flow classifier UML class diagram 
Figure 32 shows a logical representation of the FC threads of execution, and the interaction between 
these threads and external entities. Arrow heads point in the direction of communication. 
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Figure 32. TCAPS flow classifier execution and interaction diagram 
The basic operation of the FC can be summarised as follows: 
• Program begins executing in the “Main Thread”. 
• The “TCAPS Classification Thread”, “TCAPS Manager Comms Thread” and “TCAPS Flow Sifter 

Comms Thread” are created from the “TCAPS_Classifier_Task”, “TCAPS_Network_Task” and 
“TCAPS_Network_Task” classes respectively. 

• The “TCAPS Manager Comms Thread” is responsible for managing the transmission and receipt 
of all signalling protocol packets to/from all TCAPS managers the FC communicates with. 

• The “TCAPS Flow Sifter Comms Thread” is responsible for managing the transmission and 
receipt of all signalling protocol packets to/from all TCAPS flow sifters the FC communicates 
with. 

• The “TCAPS Classification Thread” is responsible for classifying realtime/interactive flows and 
assigning them a priority. 

• The “TCAPS Flow Sifter Comms Thread” binds to an arbitrarily defined UDP port number, 
currently 7777. The UDP port number is currently hard coded into the module, but will eventually 
be moved into a runtime configuration file. 

• The “TCAPS Manager Comms Thread” binds to a randomly allocated UDP port number above 
1024. 
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• For each new flow feature packet (FFP) received via the “TCAPS Flow Sifter Comms Thread”, the 
“Main Thread” will add an entry to the “TCAPS_Client_List” list in the “TCAPS Classification 
Thread” if the client the flow belongs to does not exist. If the client already exists but the FFP is 
for a new flow, the “Main Thread” will add an entry to the client’s “TCAPS_Flow_List”. If the 
client and flow already exist, the “Main Thread” will update the flow features for the flow to the 
values contained in the FFP. The IP address of the TCAPS manager managing the client is 
extracted from the FFP and stored for subsequent communications between the FC and the client’s 
manager. 

• The “Main Thread” periodically checks for any client flows that have had their assigned priority 
changed since the last check. Flows with a changed priority trigger a new classifier rule 
management packet (CRMP) to be constructed and sent via the “TCAPS Manager Comms Thread” 
to the TCAPS manager responsible for managing the client. 

• If an existing client does not receive a FFP (either for a new or existing flow) within a given 
threshold time, the client will be removed by the FC and all associated resources released. The 
threshold time is currently hard coded into the module, but will eventually be moved into a runtime 
configuration file. 

• On shutdown, the “Main Thread” frees all system resources. 
The flow classifier’s classification subsystem deserves some brief discussion. It is the core of the 
module and in some regards, can be thought of as the core of TCAPS, as it is ultimately responsible 
for the classification of realtime/interactive flows without human intervention. 
 
The “TCAPS_Simple_Algo” class was implemented as a temporary solution to demonstrate the 
detection of realtime/interactive traffic flows. Specifically, the “TCAPS_Simple_Algo” was tuned 
solely to detect Quake 3 and Cisco 7960G VoIP phone traffic flows. This is obviously not a suitable 
solution for classifying the broad range of realtime/interactive traffic sources in existence. It was 
always the intention for this module to utilise a machine learning based traffic classifier, which was 
capable of classifying a broad range of realtime/interactive traffic. However, it was clear early on in 
the implementation of the FC that such a classifier algorithm would take months to develop on its 
own, and so the decision was made to specialise the algorithm used in the prototype. 
 
As a result of this, the architecture of the classification subsystem was designed to allow new 
classification algorithms to be added without requiring any changes to the structure of the FC’s code. 
This would allow a proper machine learning based algorithm to be developed and added to the module 
at a later date. This was achieved through the use of C++’s object oriented inheritance capabilities. 
The only constraint imposed on a new classification algorithm is that it must extend the abstract base 
class “TCAPS_Classification_Algo”. This ensures that the algorithm must supply a function call with 
the following prototype: 
void classify_flow(TCAPS_Flow * flow) 
The FC code calls this function for each flow requiring classification, and as a result, expects it to be 
present in any classification algorithm being used in the module. 
 
This ability to easily extend the FC could, in the future, result in a range of classification algorithms 
being available for selection, which may provide benefits not currently available. 
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6.6 Manager 
The TCAPS manager module is responsible for managing the TCAPS related functionality of TCAPS 
enabled CPE and communicating with the other ISP side TCAPS components to coordinate required 
behaviour and operations. It is the only ISP side TCAPS module that communicates with client CPE. 
It communicates with the TCAPS client interface, TCAPS flow sifter and TCAPS flow classifier using 
the TCAPS signalling protocol. 
 
The TCAPS manager module has been developed as an object oriented C++ application, making 
extensive use of the ACE library. This design choice simplified the prototype development process for 
the module and provides a sound foundation for future development. Unlike the CI, the manager does 
not particularly need to run on an embedded platform with limited resources and a cut down operating 
system. Therefore, the choice to use threading and sockets through the ACE library is justified and not 
likely to cause any problems in the future. The previously discussed benefits of using the ACE library 
also lend credence to this design choice. 
 
Figure 33 shows the UML class diagram for the manager. Note that while “Main” is not actually a 
C++ class within the manager code (“Main” refers to the main() function of the program), it has been 
included in the diagram for clarity. 
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Figure 33. TCAPS manager UML class diagram 
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Figure 34 shows a logical representation of the manager threads of execution, and the interaction 
between these threads and external entities. Arrow heads point in the direction of communication. 

 
Figure 34. TCAPS manager execution and interaction diagram 
The basic operation of the manager can be summarised as follows: 
• Program begins executing in the “Main Thread”. 
• The “TCAPS Client Manager Thread”, “TCAPS Flow Sifter Comms Thread” and “TCAPS Client 

Comms Thread” are created from the “TCAPS_Client_Manager_Task”, “TCAPS_Network_Task” 
and “TCAPS_Network_Task” classes respectively. 

• The “TCAPS Flow Sifter Comms Thread” is responsible for managing the transmission and 
receipt of all signalling protocol packets to/from all TCAPS flow sifters the manager 
communicates with. 

• The “TCAPS Client Comms Thread” is responsible for managing the transmission and receipt of 
all signalling protocol packets to/from all TCAPS enabled CPE the manager communicates with. 

• The “TCAPS Client Manager Thread” is responsible for handling client management tasks such as 
registration, deregistration and rule management. 
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• The “TCAPS Client Comms Thread” binds to an arbitrarily defined UDP port number, currently 
6789. The UDP port number is currently hard coded into the module, but will eventually be moved 
into a runtime configuration file. 

• The “TCAPS Flow Sifter Comms Thread” binds to a randomly allocated UDP port number above 
1024. 

• For each new registration poll packet (PP) received via the “TCAPS Client Comms Thread”, the 
“Main Thread” will add an entry to the “TCAPS_Client_List” list in the “TCAPS Client Manager 
Thread”. The client is then assigned to a TCAPS flow sifter and a CMP is sent to the assigned flow 
sifter. 

• If a flow belonging to one of the existing clients is classified as realtime/interactive, the manager 
receives a CRMP from the flow classifier. The encapsulated RMP is extracted from the CRMP, the 
empty fields are filled in by the manager and the RMP is then sent to the appropriate client. A copy 
of the RMP is also stored by the manager to facilitate rule transfer requests. 

• If an existing client does not send a PP to the manager within a given threshold time, the client will 
be removed by the manager and all associated resources released. The threshold time is currently 
hard coded into the module, but will eventually be moved into a runtime configuration file. 

• On shutdown, the “Main Thread” frees all system resources. 
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7. Testing & Outcomes 
Unfortunately, time constraints limited the amount of testing that could be performed on the TCAPS 
system prototype. The original test plan involved using the Broadband Access Research Testbed 
(BART) at the Centre for Advanced Internet Architectures (CAIA) to fully evaluate the prototype over 
a typical broadband access network. As a result of the time constraints, the original test plan was 
discarded and a smaller testbed was built to allow rapid test set up and execution. Figure 35 shows the 
testbed used to test the TCAPS system prototype. 

 
Figure 35. TCAPS testbed 
 
A Cisco Catalyst 5505 switch running a supervisor II module and route switch module was used to 
emulate the client LAN, broadband access network, ISP network and connection to the wider Internet. 
VLANs provided logical groupings of 10/100Mbit Ethernet ports that were used to provide the various 
connections required. The blue ports represented a home LAN switch, connecting a home computer 
with the broadband access CPE. The broadband access modem was emulated using a standard PC 
running FreeBSD. It ran the PF/ALTQ QoS subsystem and the TCAPS client interface modules to 
behave as a standard CPE would. 
 
The home modem used NAT to allow the devices on the 192.168.1.x “home network” (blue ports) to 
connect to the ISP via the pink port connection. The pink ports emulate connection points into the 
broadband access network, and devices that connect to these are assigned IP addresses in the 
172.16.251.x range by DHCP. 
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The orange port provided a network tap of all traffic passing through the pink ports. This was used by 
the TCAPS flow sifter machine to observe all client traffic. 
 
The red ports emulate the ISPs internal network, with IP address range 172.16.250.x assigned by 
DHCP. The decision to run the flow sifter on its own physical machine was made as a result of the 
significantly higher hardware requirements (memory and processing) required by the software, 
compare to the manager and flow classifier. 
 
The green port emulates the ISPs internet connection, which in this case was a connection to 
Swinburne’s corporate network. As there were multiple devices running on the testbed using private IP 
addresses, the connection to Swinburne’s network had to use NAT in order to provide “Internet” 
connectivity to all testbed devices. 
 
Finally, the Catalyst 5505 itself performed the role of ISP router, by routing packets between the client 
side (pink ports) and ISP side (red ports) networks. 
 
This testbed effectively emulates the network shown in Figure 3 page 12, except the flow classifier 
and manager have been split from the flow sifter in the testbed. 
 
The tests performed using the testbed were primarily aimed at testing for functional correctness, as this 
was the most critical requirement for producing a demonstrable prototype. The functional testing 
process was performed iteratively, and uncovered numerous bugs within the system implementation. 
Considerable effort was made to correct each uncovered bug, which reduced the time available to 
performing other testing aimed at identifying the operational limits of the prototype. 
 
Two operational limits tests were performed to answer the questions: 
• Could the system prototype handle 100Mbit line rate traffic running on commodity hardware? 
• Could the system prototype classify Quake 3 and/or Cisco 7960G VoIP phone traffic flows within 

the required 20 second time frame? 
Due to the time constraints, the results for these tests were not quantitatively measured, but rather 
empirically observed. Based on the observations, the answer to both of the test questions was found to 
be “Yes”. Flow sifting and classification was able to function at 100Mbit traffic rates on commodity 
hardware. Flow classification of Quake 3 flows and Cisco 7960G VoIP phone traffic flows was 
typically occurring within 5 seconds of the flow beginning. 
 
It should be noted that these tests were performed with relatively low numbers of concurrent flows (10 
or fewer). It is certain that running these tests with greater numbers of concurrent flows would 
adversely affect the performance of the prototype system, based on the internal software architecture 
of the TCAPS components. However, the severity of the effects cannot be easily estimated, and only 
further testing would provide an answer as to how many concurrent flows can be supported at 100Mbit 
line rates. 
 
Whilst these tests verified the prototype met its basic design goals and functioned according to 
specification, additional testing is obviously required to provide a more comprehensive analysis of the 
prototype’s operational limits and areas for improvement. 
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8. Current TCAPS Limitations 
The design and development process for TCAPS resulted in a huge number of decisions being made 
about a wide range of implementation issues. Decisions tend to result in the lesser of two evils being 
chosen, at the expense of the positive aspects of the other choice. Some of the decisions made for the 
implementation of the TCAPS prototype have resulted in system limitations that need to be 
documented as caveats for its use. 
 
The decision to implement the client interface in C++ like the other TCAPS modules limits the 
possibility of broadband equipment manufacturers being able to use the code base. As previously 
discussed, the platform most CPE devices run on is embedded, which tend not to have higher level 
language development platforms available for them. The CI’s reliance on libACE and socket 
communications further restricts the deployment options for the CI. 
 
In order to have a have a functional prototype ready in time, the issue of TCAPS module IP address 
dissemination was not tackled. Currently, the IP address of the TCAPS manager is hard coded into the 
CI and the IP address of the FC is hard coded into the FS. The proposed solution to this problem 
discussed previously involves the use of new DHCP options requested/sent as part of the DHCP 
protocol exchange. 
 
The minimal security implemented as part of TCAPS is currently insufficient. TCAPS currently 
requires an external security framework such as IPsec to ensure the security of signalling protocol 
transmissions. Other options like HTTPS at the CI end could also provide a possible security 
framework to integrate into TCAPS. The decision to use IP based signalling ensured that an external 
security framework would be more likely to fit right in to the current architecture rather than having to 
significantly change things around. It is proposed at this time that the client’s ISP authentication 
details (RADIUS username and password perhaps) are used as the basis for authentication to TCAPS, 
although this integration has not yet been planned or designed in any way. 
 
Priority queuing, whilst a good first step, does not allow finely grained QoS. We saw in section 5.2.1 
that whilst priority queuing is able to constrain the maximum queuing delay experience by a prioritised 
packet, it is not able to guarantee a fixed queuing delay less than the maximum. If we could reduce the 
size of the largest packet placed in the non-priority, we would be able to guarantee a reduced 
maximum queuing delay, proportional to the serialization delay of the largest packet size. Ubicom’s 
StreamEngine technology uses IP fragmentation to achieve this reduction of non-priority packet size to 
improve its priority queuing maximum delay. The TCAPS QoS SS would benefit greatly if it could 
perform similar functionality to StreamEngine’s IP fragmentation. However, reinventing the wheel is 
never the right choice if it can be avoided. Therefore integrating the TCAPS CI into a StreamEngine 
enabled CPE device would provide a faster solution to this current TCAPS limitation as opposed to 
developing our own, similar technology. 
 
The classification algorithm currently implemented in the flow classifier was never meant to be a 
solution that could evolve into a commercially ready piece of software. It was implemented to 
specifically target Quake 3 and Cisco 7960G VoIP phone traffic streams, as opposed to realtime 
games and VoIP in general. This specialisation allowed the prototype to demonstrate its capabilities 
without requiring a significant time investment in creating a generic flow classifier capable of 
detecting any realtime/interactive traffic. The plan for the flow classifier was always to implement a 
machine learning based classification algorithm after the prototype had proved the TCAPS concept 
was feasible. The design of the flow classifier enables a new classification algorithm to be slotted into 
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the place where the “Simple Algorithm” currently resides in the code, without any structural change to 
the remainder of the flow classifier code base. 
 
The flow sifter’s packet sniffing functionality currently assumes it is running in an Ethernet OSI layer 
2 environment. If the underlying link layer technology of the tap supplied to the flow sifter was ATM 
for example, the sifter would not be able to function. 
 
The ISP side TCAPS modules currently do not check node status in a similar fashion to the CI polling 
the manager. The ISP modules should keep a table of active ISP TCAPS nodes and periodically verify 
the nodes are still functioning, removing them from the active table if they appear to have failed. 
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9. Further Work 
The TCAPS prototype implementation documented in this report is certainly not ready for 
commercialisation yet. There are a number of hurdles that need to be passed before it would be ready 
to go to market. There are also an almost infinite number of additional features that could be added, a 
few of which will be discussed below. None of the hurdles are significant enough that they could not 
be solved with some additional development work and time. 
 
The current TCAPS code base needs to be tidied up, refined, optimised, and documented before 
further development work is undertaken. Lack of time and speed of development made proper and 
accurate documenting of code almost impossible, and resulted in many sections of code being left in 
sub optimal configurations. 
 
Run time configuration files need to be implemented to allow user configuration of variables that are 
currently hard coded into the various modules. 
 
Selecting and implementing a means for TCAPS node IP dissemination will an important step towards 
a commercially ready TCAPS implementation. 
 
Integrating a security framework into or around TCAPS is a critical hurdle that must be achieved. 
 
Implementing an accurate and efficient machine learning based classifier into the TCAPS flow 
classifier is another important hurdle that must be overcome. If a machine learning classifier looks like 
it will take too long to perfect, an interim TCP/UDP port inspection based classifier could be 
implemented as an immediate solution that could be upgraded to a machine learning based alternative 
at a later date. This option could be used to reduce time to market if required. 
 
Providing a user interface to the system that would allow clients to specify permanent rules would be a 
useful feature addition to TCAPS. 
 
Adding the ability for TCAPS to exploit more of the features provided by the CPE’s QoS subsystem 
would be a useful feature addition. For example, as well as providing prioritisation information, 
TCAPS could also provide firewall rules that are dynamically created and installed at client CPE 
devices to reduce the impact of an Internet virus. 
 
A non critical piece of further work would be to explore alternatives to priority queuing as means for 
providing prioritisation. 
 
Getting CPE manufacturers on board and developing their own TCAPS enabled CPE is a crucial step 
to seeing TCAPS commercialised. 
 
Running an ISP based TCAPS trial would be required once the code had matured to a stable point and 
was ready for a field trial. If a TCAPS enabled CPE device was not ready for field trials, a standalone 
UNIX router performing the functionality of a TCAPS enabled CPE could be installed at participating 
customer premises instead. 
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10. Conclusion & Recommendations 
The Traffic Classification and Prioritisation System (TCAPS) project aimed to develop an architecture 
for realtime network traffic classification and prioritisation for use in ISP broadband access networks, 
as well as a prototype of the system. The specification, design and development of the system has 
taken 1 year to arrive at its current state. 
 
The TCAPS architecture has been designed to provide a robust, scalable and efficient framework for 
broadband QoS provision. The features offered by the architecture include: deployment flexibility, 
interoperability between TCAPS enabled and standard CPE, backwards compatibility of TCAPS 
enabled CPE, automated definition of prioritisation rules, customised prioritisation rules for each 
client, and the ability to classify encrypted flows. 
 
The current TCAPS prototype built to demonstrate the TCAPS architecture provides a solid 
foundation for any future development of TCAPS. It has been implemented entirely in software for 
speed of development and deployment flexibility. The use of industry leading technologies, careful 
procedural/object oriented software design and advanced software programming features ensure the 
software is robust, maintainable and scalable. Further testing of the prototype would have been greatly 
desirable, and will need to be completed if the project is taken further. 
 
Overall, the TCAPS project has met it design goals, has a functioning prototype capable of 
demonstrating a majority of the features important to the TCAPS architecture and can therefore be 
considered a success. 
 
It is the recommendation of this report that the TCAPS architecture is a feasible framework to 
commercially pursue for the provisioning of automated QoS over consumer broadband links. The 
current TCAPS prototype implementation met its design requirements, but falls short of commercial 
viability, and requires additional development work and testing to bring it up to a commercial level. 
The points discussed in section 9 of this report cover the additional work required before TCAPS 
could be publicly released. The estimated time frame for the completion of the critical additional work 
required for TCAPS commercial viability is 6 to 12 months. 
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Glossary 
Term/Acronym Definition/Description 
API Application Programming Interface. It is the 

interface that enables one program to use facilities 
provided by another, whether by calling that 
program, or by being called by it 

Bandwidth Measurement of the speed of a link. Normally 
measured in bits per second 

Bit The most basic unit in digital electronics. Can have 
two states: on or off. In computing terms, is either 
a 1 for on, 0 for off 

bps bits per second. Measures the speed of a digital 
communications link 

Byte A byte consists of 8 bits 
BART Broadband Access Research Testbed 
Bridge A piece of networking equipment that is used to 

physically segment networks and is responsible for 
passing inter-network traffic between the networks 
whilst leaving intra-network traffic on its 
originating network 

BSD Berkeley Software Distribution 
CAIA Centre for Advanced Internet Architectures 
CI Client Interface 
CP Customer Premises 
CPE Customer Premises Equipment 
csh The Berkeley UNIX C shell 
DHCP Dynamic Host Configuration Protocol 
DiffServ Differentiated Services 
FC Flow Classifier 
FIFO First In First Out. Queue management technique 

where by elements that enter the queue first are the 
first to leave 

FreeBSD A free, UNIX based OS, developed by the 
University of California, Berkeley 

FS Flow Sifter 
GNU GNU’s Not Unix 
GPL General Public Licence. A free software licence 

from the GNU project. 
HTTP Hypertext Transfer Protocol 
IETF Internet Engineering Task Force 
IntServ Integrated Services 
IP Internet Protocol 
IPv4 See IP 
IPv6 Internet Protocol version 6. Next generation 

version of IPv4, 
ISO International Organisation for Standardisation 
ISP Internet Service Provider 
Jitter Variation in latency. Typically measured in 

milliseconds 
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Kbps Kilo bps. 1000 bps i.e. 5kbps is 5000 bps 
Latency A measure of the amount of time it takes to send a 

single packet of data from one point in a network 
to another. Typically measured in milliseconds 

LAN Local Area Network 
Mbps Mega bps. 1000000 bps i.e. 5mbps is 5000000 bps 
ML Machine Learning 
MPLS Multiprotocol Label Switching 
OEM Original Equipment Manufacturer 
OS Operating System 
OSI Open System Interconnection. An ISO network 

communications standard 
Packet A unit of data sent across a network 
Packet filtering Selective passing or blocking of data packets as 

they pass through a network interface based on a 
defined set of rules 

QoS Quality of Service 
Router A device that determines the next network point to 

which a data packet should be forwarded enroute 
toward its destination 

Shell An operating system command interpreter 
SS Subsystem 
TCP Transport Control Protocol. Connection oriented 

transport protocol 
TX Abbreviation for “transmit” 
UDP Universal Datagram Protocol. Connectionless 

transport protocol 
UNIX A cross platform operating system developed at 

AT&T labs 
WWW World Wide Web 
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Appendix A: Conference paper: “An Architecture for 
Automated Network Control of QoS over Consumer Broadband 
Links” 
 
L.Stewart, G.Armitage, P.Branch, S.Zander, "An Architecture for Automated Network Control of 
QoS over Consumer Broadband Links", IEEE TENCON 05 Melbourne, Australia, 21 - 24 
November, 2005 


